
Digi XBee3® 802.15.4
Radio Frequency (RF) Module

User Guide

Revision history—90002273

Revision Date Description

A April 2018 Initial release.

B September
2018

S2C parity release.

C April 2019 Added sleep support, file system, OTA file system updates, and several
MicroPython features.

D August
2019

Added%P and DM. Updated RR. Updates to Remote AT Command Request
frame. Added location and BLE commands. Added statuses to the 0x8A
frame. Added frames Ox2C, 0x2D, 0xAC, and 0xAD. Added Get started with
BLE and BLE reference sections. Made changes to the CCA operations
section.

Trademarks and copyright
Digi, Digi International, and the Digi logo are trademarks or registered trademarks in the United
States and other countries worldwide. All other trademarks mentioned in this document are the
property of their respective owners.
© 2019 Digi International Inc. All rights reserved.

Disclaimers
Information in this document is subject to change without notice and does not represent a
commitment on the part of Digi International. Digi provides this document “as is,” without warranty of
any kind, expressed or implied, including, but not limited to, the implied warranties of fitness or
merchantability for a particular purpose. Digi may make improvements and/or changes in this manual
or in the product(s) and/or the program(s) described in this manual at any time.

Warranty
To view product warranty information, go to the following website:

www.digi.com/howtobuy/terms

Customer support
Gather support information: Before contacting Digi technical support for help, gather the following
information:
 Product name andmodel
 Product serial number (s)
 Firmware version
 Operating system/browser (if applicable)
 Logs (from time of reported issue)

Digi XBee3® 802.15.4 RF Module User Guide 2

http://www.digi.com/howtobuy/terms

 Trace (if possible)
 Description of issue
 Steps to reproduce
Contact Digi technical support: Digi offers multiple technical support plans and service packages.
Contact us at +1 952.912.3444 or visit us at www.digi.com/support.

Feedback
To provide feedback on this document, email your comments to

techcomm@digi.com

Include the document title and part number (Digi XBee3® 802.15.4 RF Module User Guide, 90002273 D)
in the subject line of your email.

Digi XBee3® 802.15.4 RF Module User Guide 3

http://www.digi.com/support
mailto:techcomm@digi.com

Contents

Digi XBee3® 802.15.4 RF Module User Guide
Applicable firmware and hardware 14
Change the firmware protocol 14
Regulatory information 14

Get started
Verify kit contents 16
Assemble the hardware 16

Plug in the XBee3 802.15.4 RF Module 17
Unplug an XBee3 802.15.4 RF Module 18

Configure the device using XCTU 18
Configure remote devices 18
Configure the devices for a range test 20
Perform a range test 20
XBIB-C Micro Mount reference 25
XBIB-C SMT reference 28
XBIB-CU TH reference 30
XBIB-C-GPS reference 32
Interface with the XBIB-C-GPS module 34

I2C communication 35
UART communication 35
Run the MicroPython GPS demo 35

Get started with MicroPython
About MicroPython 38
MicroPython on the XBee3 802.15.4 RF Module 38
Use XCTU to enter the MicroPython environment 38
Use the MicroPython Terminal in XCTU 39
MicroPython examples 39

Example: hello world 39
Example: enter MicroPython paste mode 39
Example: using the time module 40
Example: AT commands using MicroPython 40
MicroPython networking and communication examples 41

Exit MicroPython mode 47
Other terminal programs 48

Tera Term for Windows 48
Use picocom in Linux 49

Digi XBee3® 802.15.4 RF Module User Guide 4

Digi XBee3® 802.15.4 RF Module User Guide 5

Micropython help () 50

File system
Overview of the file system 53
Directory structure 53
Paths 53
Limitations 53
XCTU interface 54

Get started with BLE
Enable BLE on the XBee3 802.15.4 RF Module 56
Enable BLE and configure the BLE password 56
Get the Digi XBee Mobile phone application 57
Connect with BLE and configure your XBee3 device 58

BLE reference
BLE advertising behavior and services 60
Device Information Service 60
XBee API BLE Service 60
API Request characteristic 60
API Response characteristic 61

Configure the XBee3 802.15.4 RF Module
Software libraries 63
Over-the-air (OTA) firmware update 63
Custom defaults 63

Set custom defaults 63
Restore factory defaults 63
Limitations 63

Custom configuration: Create a new factory default 64
Set a custom configuration 64
Clear all custom configuration on a device 64

XBee bootloader 64
Send a firmware image 65
XBee Network Assistant 65
XBee Multi Programmer 66

Modes
Transparent operating mode 68

Serial-to-RF packetization 68
API operating mode 68
Commandmode 68

Enter Commandmode 69
Troubleshooting 69
Send AT commands 69
Response to AT commands 70
Apply command changes 70

Digi XBee3® 802.15.4 RF Module User Guide 6

Make command changes permanent 70
Exit Commandmode 70

Idle mode 71
Transmit mode 71
Receive mode 71

Serial communication
Serial interface 73
Serial receive buffer 73
Serial transmit buffer 73
UART data flow 73

Serial data 73
Flow control 74

Clear-to-send (CTS) flow control 74
RTS flow control 75

SPI operation
SPI communications 77
Full duplex operation 78
Low power operation 78
Select the SPI port 79
Force UART operation 80

I/O support
Legacy support 82
Mixed network considerations 83
Digital I/O support 83
Analog I/O support 84
Monitor I/O lines 85
I/O sample data format 86

Legacy data format 86
Enhanced data format 87

API frame support 88
On-demand sampling 89

Example: Commandmode 89
Example: Local AT command in API mode 90
Example: Remote AT command in API mode 90

Periodic I/O sampling 91
Source 91
Destination 92
Multiple samples per packet 92
Example: Remote AT command in API mode 92

Digital I/O change detection 93
I/O line passing 94
Digital line passing 94

Example: Digital line passing 95
Analog line passing 95
Example: Analog line passing 95

Output sample data 96
Output control 96

Digi XBee3® 802.15.4 RF Module User Guide 7

I/O behavior during sleep 96
Digital I/O lines 96
Analog and PWM I/O Lines 97

Networking
Networking terms 99
MAC Mode configuration 99
Clear Channel Assessment (CCA) 100

CCA operations 100
Retries configuration 100
Transmit status based on MAC mode and XBee retries configurations 101
Addressing 102

Send packets to a specific device in Transparent API mode 102
Addressing modes 102

Peer-to-peer networks 103
Master/slave networks 103

End device association 103
Coordinator association 104
Association indicators 105
Modem status messages 105
Association indicator status codes 106

Direct and indirect transmission 106
Configure an indirect messaging coordinator 107
Send indirect messages 107
Receive indirect messages 107

Encryption 108
Maximum payload 109

Maximum payload rules 109
Maximum payload summary tables 110
Working with Legacy devices 111

Network commissioning and diagnostics
Remote configuration commands 113

Send a remote command 113
Apply changes on remote devices 113
Remote command responses 113

Node discovery 113
About node discovery 114
Node discovery in compatibility mode 114
Directed node discovery 114
Directed node discovery in compatibility mode 115
Destination Node 115

Sleep support
Sleepmodes 117

Pin Sleepmode (SM = 1) 117
Cyclic Sleepmode (SM = 4) 117
Cyclic Sleep with Pin Wake-upmode (SM = 5) 118
MicroPython sleep with optional pin wake (SM = 6) 118

Sleep parameters 118

Digi XBee3® 802.15.4 RF Module User Guide 8

Sleep pins 118
Sleep conditions 119

AT commands
Network and security commands 121

CH (Operating Channel) 121
ID (Extended PAN ID) 121
C8 command 121
NI (Node Identifier) 123
ND (Network Discover) 123
DN (Discover Node) 124
NT (Node Discover Timeout) 125
NO (Node Discovery Options) 125
MM (MAC Mode) 125
NP (Maximum Packet Payload Bytes) 126

Coordinator/End Device configuration commands 126
CE (Coordinator Enable) 126
A1 (End Device Association) 127
A2 (Coordinator Association) 127
SC (Scan Channels) 128
DA (Force Disassociation) 129
AI (Association Indication) 129

802.15.4 Addressing commands 130
SH (Serial Number High) 130
SL (Serial Number Low) 130
MY (16-bit Source Address) 130
DH (Destination Address High) 131
DL (Destination Address Low) 131
RR (XBee Retries) 131
TO (Transmit Options) 132

Security commands 132
EE (Encryption Enable) 132
KY (AES Encryption Key) 133
FK (File System Public Key) 133
DM (Disable Features) 133

RF interfacing commands 134
PL (TX Power Level) 134
PP (Output Power in dBm) 134
CA (CCA Threshold) 135
RN (Random Delay Slots) 135
DB (Last Packet RSSI) 135

MAC diagnostics commands 136
AS (Active Scan) 136
ED (Energy Detect) 137
EA (ACK Failures) 137
EC (CCA Failures) 137

Sleep settings commands 138
SM (Sleep Mode) 138
SP (Cyclic Sleep Period) 138
ST (Time before Sleep) 139
DP (Disassociated Cyclic Sleep Period) 139
SO (Sleep Options) 139
FP (Force Poll) 140

UART interface commands 140

Digi XBee3® 802.15.4 RF Module User Guide 9

BD (Interface Data Rate) 140
NB (Parity) 141
SB (Stop Bits) 142
FT command 142
RO (Packetization Timeout) 142
AP (API Enable) 143
AO (API Output Options) 143
AZ (Extended API Options) 143

Commandmode options 144
CC (Command Character) 144
CT (Command Mode Timeout) 144
GT (Guard Times) 144
CN (Exit Commandmode) 145

UART pin configuration commands 145
D6 (DIO6/RTS Configuration) 145
D7 (DIO7/CTS Configuration) 145
P3 (DIO13/UART_DOUT Configuration) 146
P4 (DIO14/UART_DIN Configuration) 146

SPI interface commands 147
P5 (DIO15/SPI_MISO Configuration) 147
P6 (DIO16/SPI_MOSI Configuration) 147
P7 (DIO17/SPI_SSEL Configuration) 148
P8 (DIO18/SPI_CLK Configuration) 148
P9 (DIO19/SPI_ATTN Configuration) 149

I/O settings commands 149
D0 (DIO0/ADC0/Commissioning Configuration) 149
CB (Commissioning Button) 150
D1 (DIO1/ADC1/TH_SPI_ATTN Configuration) 150
D2 (DIO2/ADC2/TH_SPI_CLK Configuration) 151
D3 (DIO3/ADC3/TH_SPI_SSEL Configuration) 151
D4 (DIO4/TH_SPI_MOSI Configuration) 152
D5 (DIO5/Associate Configuration) 152
D8 (DIO8/DTR/SLP_Request Configuration) 153
D9 (DIO9/ON_SLEEP Configuration) 153
P0 (DIO10/RSSI/PWM0 Configuration) 154
P1 (DIO11/PWM1 Configuration) 154
P2 (DIO12/TH_SPI_MISO Configuration) 155
PR (Pull-up/Down Resistor Enable) 155
PD (Pull Up/Down Direction) 156
M0 (PWM0 Duty Cycle) 157
M1 (PWM1 Duty Cycle) 157
RP (RSSI PWM Timer) 157
LT command 158

I/O sampling commands 158
IS (I/O Sample) 158
IR (Sample Rate) 159
IC (DIO Change Detect) 159
AV (Analog Voltage Reference) 160
IT (Samples before TX) 161
IF (Sleep Sample Rate) 161
IO (Digital Output Level) 161

I/O line passing commands 161
IA (I/O Input Address) 162
IU (I/O Output Enable) 162
T0 (D0 Timeout Timer) 162

Digi XBee3® 802.15.4 RF Module User Guide 10

T1 (D1 Output Timeout Timer) 162
T2 (D2 Output Timeout Timer) 163
T3 (D3 Output Timeout Timer) 163
T4 (D4 Output Timeout Timer) 163
T5 (D5 Output Timeout Timer) 163
T6 (D6 Output Timeout Timer) 163
T7 (D7 Output Timeout Timer) 164
T8 (D8 Output Timer) 164
T9 (D9 Output Timer) 164
Q0 (P0 Output Timer) 164
Q1 (P1 Output Timer) 165
Q2 (P2 Output Timer) 165
PT (PWM Output Timeout) 165

Location commands 165
LX (Location X) 165
LY (Location Y) 166
LZ (Location Z) 166

Diagnostic commands - firmware/hardware information 166
VR (Firmware Version) 166
VL (Version Long) 166
VH (Bootloader Version) 166
HV (Hardware Version) 167
%C (Hardware/Software Compatibility) 167
%P (Invoke Bootloader) 167
%V (Supply Voltage) 167
TP (Module Temperature) 168
DD (Device Type Identifier) 168
CK (Configuration CRC) 168
FR (Software Reset) 168

MicroPython commands 168
PS (Python Startup) 169
PY (MicroPython Command) 169

File system commands 170
FS (File System) 170
FK (File System Public Key) 171

Memory access commands 172
AC (Apply Changes) 172
WR (Write) 172
RE (Restore Defaults) 173

BLE commands 173
BL command 173
BT command 173
$S (SRP Salt) 174
$V, $W, $X, $Y commands (SRP Salt verifier) 174

Custom default commands 174
%F (Set Custom Default) 174
!C (Clear Custom Defaults) 175
R1 (Restore Factory Defaults) 175

Operate in API mode
API mode overview 177
Use the AP command to set the operation mode 177
API frame format 177

API operation (AP parameter = 1) 177

Digi XBee3® 802.15.4 RF Module User Guide 11

API operation with escaped characters (AP parameter = 2) 178

Frame descriptions
TX Request: 64-bit address frame - 0x00 182
TX Request: 16-bit address - 0x01 183
AT Command Frame - 0x08 184
AT Command - Queue Parameter Value frame - 0x09 186
Transmit Request frame - 0x10 186
Explicit Addressing Command frame - 0x11 188
Remote AT Command Request frame - 0x17 192
BLE Unlock API frame - 0x2C 192

Example sequence to perform AT Command XBee API frames over BLE 195
User Data Relay frame - 0x2D 195
RX Packet: 64-bit Address frame - 0x80 196
Receive Packet: 16-bit address frame - 0x81 197
RX (Receive) Packet: 64-bit address IO frame - 0x82 198
RX Packet: 16-bit address I/O frame - 0x83 200
AT Command Response frame - 0x88 202
TX Status frame - 0x89 204
Modem Status frame - 0x8A 206
Transmit Status frame - 0x8B 207
Receive Packet frame - 0x90 209
Explicit Rx Indicator frame - 0x91 211
I/O Data Sample Rx Indicator frame - 0x92 213
Remote Command Response frame - 0x97 215
BLE Unlock Response frame - 0xAC 215
User Data Relay Output - 0xAD 215

Over-the-air firmware/filesystem upgrade process for 802.15.4
OTA upgrade image file formats 217

OTA/OTB file 217
fs.ota file 217
The OTA header 217
Hardware/software compatibility 218
Parse the image blocks 218

Storage 218
ZCL OTAmessaging 218
ZCLmessage output 219
Image Notify 219
Create the Image Notify request 220
Query Next Image request 221
Query Next Image response 223
Image Block request 225
Image Block response 227
Upgrade End request 230
Upgrade End response 231
OTA error handling 234

Default response commands 234
Upgrade End Request error statuses 235

Digi XBee3® 802.15.4 RF Module User Guide 12

OTA file system upgrades
OTA file system update process 238
OTA file system updates using XCTU 238

Generate a public/private key pair 238
Set the public key on the XBee3 device 239
Create the OTA file system image 240
Perform the OTA file system update 241

OTA file system updates: OEM 242
Generate a public/private key pair 243
Set the public key on the XBee3 device 243
Create the OTA file system image 243
Perform the OTA file system update 244

Digi XBee3® 802.15.4 RF Module User Guide

XBee3 802.15.4 RF Modules are embedded solutions providing wireless end-point connectivity to
devices. These devices use the IEEE 802.15.4 networking protocol for fast point-to-multipoint or peer-
to-peer networking. They are designed for high-throughput applications requiring low latency and
predictable communication timing.
The XBee3 802.15.4 RF Module supports the needs of low-cost, low-power wireless sensor networks.
The devices require minimal power and provide reliable delivery of data between devices. The devices
operate within the ISM 2.4 GHz frequency band.
The XBee3 802.15.4 RF Module uses XBee3 hardware and the Silicon Labs EFR32 chipset. As the name
suggests, the 802.15.4 module is over-the-air compatible with our Legacy 802.15.4 modules (S1 and
S2C hardware).
For information about XBee3 hardware, see the XBee3 RF Module Hardware Reference Manual.

Applicable firmware and hardware 14
Change the firmware protocol 14
Regulatory information 14

Digi XBee3® 802.15.4 RF Module User Guide 13

https://www.digi.com/resources/documentation/digidocs/90001543/default.htm

Digi XBee3® 802.15.4 RF Module User Guide Applicable firmware and hardware

Digi XBee3® 802.15.4 RF Module User Guide 14

Applicable firmware and hardware
This manual supports the following firmware:

n v.20xx Digi 802.15.4

It supports the following hardware:

n XBee3

Change the firmware protocol
You can switch the firmware loaded onto the XBee3 hardware to run any of the following protocols:

n Zigbee
n 802.15.4
n DigiMesh

To change protocols, use the Update firmware feature in XCTU and select the firmware. See the
XCTU User Guide.

Regulatory information
See the Regulatory information section of the XBee3 RF Module Hardware Reference Manual for the
XBee3 hardware's regulatory and certification information.

https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_ts_how-to_update_firmware.htm
https://www.digi.com/resources/documentation/Digidocs/90001543/#containers/cont_certs.htm%3FTocPath%3DRegulatory%2520information|_____0
https://www.digi.com/resources/documentation/digidocs/90001543/default.htm

Get started

This section covers the following tasks and features:

Verify kit contents 16
Assemble the hardware 16
Configure the device using XCTU 18
Configure remote devices 18
Configure the devices for a range test 20
Perform a range test 20
XBIB-C Micro Mount reference 25
XBIB-C SMT reference 28
XBIB-CU TH reference 30
XBIB-C-GPS reference 32
Interface with the XBIB-C-GPS module 34

Digi XBee3® 802.15.4 RF Module User Guide 15

Get started Verify kit contents

Digi XBee3® 802.15.4 RF Module User Guide 16

Verify kit contents
The XBee3 802.15.4 RF Module development kit contains the following components:

Part

XBee3 Zigbee SMT module (3)

XBee Grove development board (3)

Micro USB cable (3)

Antenna - 2.4 GHz, half-wave dipole, 2.1 dBi, U.FL female, articulating
(3)

XBee stickers

Assemble the hardware
This guide walks you through the steps required to assemble and disassemble the hardware
components of your kit.

n Plug in the XBee3 802.15.4 RF Module
n Unplug an XBee3 802.15.4 RF Module

https://www.digi.com/resources/documentation/Digidocs/90001457-13/

Get started Assemble the hardware

Digi XBee3® 802.15.4 RF Module User Guide 17

The kit includes several XBee Grove Development Boards. For more information about this hardware,
see the XBee Grove Development Board documentation.

Plug in the XBee3 802.15.4 RF Module
This kit includes two XBee Grove Development Boards. For more information about this hardware,
visit the XBee Grove Development Board documentation.
Follow these steps to connect the XBee devices to the boards included in the kit:

1. Plug one XBee3 802.15.4 RF Module into each XBee Grove Development Board. When you
connect the development board to a PC for the first time, the PC automatically installs drivers,
which may take a few minutes to complete.

CAUTION! Never insert or remove the XBee while the power is on (either from the
micro USB or a battery)!

For XBee SMT devices, align all XBee pins with the spring header and carefully push the device
until it clicks firmly into the board.

https://www.digi.com/resources/documentation/Digidocs/90001457-13/
https://www.digi.com/resources/documentation/Digidocs/90001457-13/

Get started Configure the device using XCTU

Digi XBee3® 802.15.4 RF Module User Guide 18

2. Once theXBee3 802.15.4 RF Module is plugged into the board, connect the board to your
computer using the micro USB cables provided.

3. Ensure the loopback jumper is in the UART position.

Unplug an XBee3 802.15.4 RF Module
To disconnect a device from the XBee Grove Development Board:

1. Disconnect the micro USB cable from the board so it is not powered.
2. Remove the device from the board socket, taking care not to bend any of the pins. The surface

mount device uses spring pins rather than a socket and has a rectangular board cutout
designed to help in removing the XBee3 802.15.4 RF Module.

CAUTION! Make sure the board is not powered when you remove the XBee3 802.15.4 RF
Module.

Configure the device using XCTU
XBee Configuration and Test Utility (XCTU) is a multi-platform program that enables users to interact
with Digi radio frequency (RF) devices through a graphical interface. The application includes built-in
tools that make it easy to set up, configure, and test Digi RF devices.
For instructions on downloading and using XCTU, see the XCTU User Guide.

Configure remote devices
You can communicate with remote devices over the air through a corresponding local device.

Note Using API mode on the local device allows you to send remote API commands.

These instructions show you how to configure the LT command parameter on a remote device.

1. Add two XBee devices to XCTU.
2. Load XBee3 802.15.4 firmware onto each device if it is not already loaded. See How to update

the firmware of your modules in the XCTU User Guide for more information.

https://www.digi.com/products/xbee-rf-solutions/xctu-software/xctu#productsupport-utilities
http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm
http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_ts_how-to_update_firmware.htm
http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_ts_how-to_update_firmware.htm

Get started Configure remote devices

Digi XBee3® 802.15.4 RF Module User Guide 19

3. Configure the first device in API mode and name it XBEE_A by configuring the following
parameters:

n ID: 2018
n NI: XBEE_A
n AP: API enabled [1]

4. Configure the second device in either API or Transparent mode, and name it XBEE_B by
configuring the following parameters:

n ID: 2018
n NI: XBEE_B
n AP: 0 or 1

4. Disconnect XBEE_B from your computer and remove it from XCTU.
5. Connect XBEE_B to a power supply (or laptop or portable battery).

The Radio Modules area should look something like this.

6. Select XBEE_A and click the Discover radio nodes in the same network button .
7. Click Add selected devices in the Discovering remote devices dialog. The discovered remote

device appears below XBEE_A.

8. Select the remote device XBEE_B, and configure the following parameter:
LT: FF (hexadecimal representation for 2550 ms)

Get started Configure the devices for a range test

Digi XBee3® 802.15.4 RF Module User Guide 20

9. Click the Write radio settings button .
The remote XBee device now has a different LED blink time.

10. To return to the default LED blink times, change the LT parameter back to 0 for XBEE_B.

Configure the devices for a range test
1. Add two devices to XCTU.
2. Select the first module and click the Load default firmware settings button.
3. Configure the following parameters:

ID: 2018
NI: LOCAL_DEVICE
AP: API Mode Enabled [1]

4. Click the Write radio settings button.
5. Select the other module and click the Default firmware settings button.
6. Configure the following parameters:

ID: 2018
NI: REMOTE_DEVICE
AP: Transparent mode [0] (The remote node must be in transparent mode to loop back
packets)

7. Click the Write radio settings button.
After you write the radio settings for each device, their names appear in the Radio Modules
area. The Port indicates that the LOCAL_DEVICE is in API mode.

8. Disconnect REMOTE_DEVICE from the computer, remove it from XCTU, and connect it to a
power supply, laptop, or portable battery.

9. Leave LOCAL_DEVICE connected to the computer.

Perform a range test
1. Go to the XCTU display for radio 1.

Get started Perform a range test

Digi XBee3® 802.15.4 RF Module User Guide 21

2. Click to discover remote devices within the same network. The Discover remote devices
dialog appears.

3. Click Add selected devices.

Get started Perform a range test

Digi XBee3® 802.15.4 RF Module User Guide 22

4. Click and select Range test. The Radio Range Test dialog appears.

5. Change the Range Test type to Loopback.
6. In the Select the local radio device area, select radio 1. XCTU automatically selects the

Discovered device option, and the Start Range Test button is active.

Get started Perform a range test

Digi XBee3® 802.15.4 RF Module User Guide 23

7. Click to begin the range test. XCTU prompts you to enable the loopback
jumper.

Plug in the XBee3 802.15.4 RF Module has pictures that show the jumper in the UART
position—move the jumper to the left on the surface-mount device or down on the through-
hole device puts it in loopback mode
If the test is running properly, the packets sent should match the packets received. You will
also see the received signal strength indicator (RSSI) update for each radio after each
reception.

Get started Perform a range test

Digi XBee3® 802.15.4 RF Module User Guide 24

8. Move Radio 1 around to see the resulting signal strength at different distances. You can also
test different data rates by reconfiguring the BR (data rate) parameter on both radios. When
the test is complete, click Stop Range Test. XCTU displays another loopback jumper warning
screen reminding you to put the loopback jumper back in its original position.

Get started XBIB-C Micro Mount reference

Digi XBee3® 802.15.4 RF Module User Guide 25

XBIB-C Micro Mount reference
This picture shows the XBee-C Micro Mount development board and the table that follows explains the
callouts in the picture.

Note This board is sold separately.

Get started XBIB-C Micro Mount reference

Digi XBee3® 802.15.4 RF Module User Guide 26

Get started XBIB-C Micro Mount reference

Digi XBee3® 802.15.4 RF Module User Guide 27

Number Item Description

1 Secondary USB
(USB MICRO B)

Secondary USB Connector for possible future use. Not used.

2 Current
Measure

Large switch controls whether current measure mode is active or
inactive. When inactive, current can freely flow to the VCC pin of the
XBee. When active, the VCC pin of the XBee is disconnected from the 3.3
V line on the development board. This allows current measurement to
be conducted by attaching a current meter across the jumper P10.

3 Battery
Connector

If desired, you can attach a battery to provide power to the
development board. The voltage can range from 2 V to 5 V. The positive
terminal is on the left.

4 USB-C
Connector

Connects to your computer. This is connected to a USB to UART
conversion chip that has the five UART lines passed to the XBee device.
The UART Dip Switch can be used to disconnect these UART lines from
the XBee.

5 LED indicator Red: UART DOUT (modem sending serial/UART data to host)
Green: UART DIN (modem receiving serial/UART data from host)
White: ON/SLP/DIO9
Blue: Connection Status/DIO5
Yellow: RSSI/PWM0/DIO10

6 User Buttons Comm DIO0 Button connects the Commissioning/DIO0 pin on the XBee
Connector through to a 10 Ω resistor to GND when pressed.

RESET Button Connects to the RESET pin on the XBee Connector to GND
when pressed.

7 Breakout
Connector

This 40-pin connector can be used to connect to various XBee pins as
shown on the silkscreen on the bottom of the board.

8 UART Dip
Switch

This dip switch allows the user to disconnect any of the primary UART
lines on the XBee from the USB to UART conversion chip. This allows for
testing on the primary UART lines without the USB to UART conversion
chip interfering. Push Dip switches to the right to disconnect the USB to
UART conversion chip from the XBee.

9 Grove
Connector

This connector can be used to attach I2C enabled devices to the
development board. Note that I2C needs to be available on the XBee in
the board to use this functionality.
Pin 1: I2C_CLK/XBee DIO1
Pin2: I2C_SDA/XBee DIO11
Pin3: VCC
Pin4: GND

10 Temp/Humidity
Sensor

This as a Texas Instruments HDC1080 temperature and humidity
sensor. This part is accessible through I2C. Be sure that the XBee that is
inserted into the development board has I2C if access to this sensor is
desired.

11 XBee Socket This is the socket for the XBee (Micro form factor).

Get started XBIB-C SMT reference

Digi XBee3® 802.15.4 RF Module User Guide 28

XBIB-C SMT reference
This picture shows the XBee-C SMT development board and the table that follows explains the
callouts in the picture.

Note This board is sold separately.

Get started XBIB-C SMT reference

Digi XBee3® 802.15.4 RF Module User Guide 29

Number Item Description

1 Secondary USB
(USB MICRO B)

Secondary USB Connector for possible future use. Not used.

2 Current
Measure

Large switch controls whether current measure mode is active or
inactive. When inactive, current can freely flow to the VCC pin of the
XBee. When active, the VCC pin of the XBee is disconnected from the 3.3
V line on the dev board. This allows current measurement to be
conducted by attaching a current meter across the jumper P10.

3 Battery
Connector

If desired, you can attach a battery to provide power to the
development board. The voltage can range from 2 V to 5 V. The positive
terminal is on the left.

4 USB-C
Connector

Connects to your computer. This is connected to a USB to UART
conversion chip that has the five UART lines passed to the XBee. The
UART Dip Switch can be used to disconnect these UART lines from the
XBee.

5 LED indicator Red: UART DOUT (modem sending serial/UART data to host)
Green: UART DIN (modem receiving serial/UART data from host)
White: ON/SLP/DIO9
Blue: Connection Status/DIO5
Yellow: RSSI/PWM0/DIO10

6 User Buttons Comm DIO0 Button connects the Commissioning/DIO0 pin on the XBee
Connector through to a 10 Ω resistor to GND when pressed.

RESET Button Connects to the RESET pin on the XBee Connector to GND
when pressed.

7 Breakout
Connector

This 40-pin connector can be used to connect to various XBee pins as
shown on the silkscreen on the bottom of the board.

8 UART Dip
Switch

This dip switch allows the user to disconnect any of the primary UART
lines on the XBee from the USB to UART conversion chip. This allows for
testing on the primary UART lines without the USB to UART conversion
chip interfering. Push Dip switches to the right to disconnect the USB to
UART conversion chip from the XBee.

9 Grove
Connector

This connector can be used to attach I2C enabled devices to the
development board. Note that I2C needs to be available on the XBee in
the board to use this functionality.
Pin 1: I2C_CLK/XBee DIO1
Pin2: I2C_SDA/XBee DIO11
Pin3: VCC
Pin4: GND

10 Temp/Humidity
Sensor

This as a Texas Instruments HDC1080 temperature and humidity
sensor. This part is accessible through I2C. Be sure that the XBee that is
inserted into the Dev Board has I2C if access to this sensor is desired.

11 XBee Socket This is the socket for the XBee (SMT form factor)

Get started XBIB-CU TH reference

Digi XBee3® 802.15.4 RF Module User Guide 30

XBIB-CU TH reference
This picture shows the XBee-CU TH development board and the table that follows explains the
callouts in the picture.

Note This board is sold separately.

Get started XBIB-CU TH reference

Digi XBee3® 802.15.4 RF Module User Guide 31

Number Item Description

1 Secondary USB
(USB MICRO B)
and DIP Switch

Secondary USB Connector for direct programming of modules on some
XBee units. Flip the Dip switches to the right for I2C access to the
board; flip Dip switches to the left to disable I2C access to the board.
The USB_P and USB_N lines are always connected to the XBee,
regardless of Dip switch setting.
This USB port is not designed to power the module or the board. Do not
plug in a USB cable here unless the board is already being powered
through the main USB-C connector. Do not attach a USB cable here if
the Dip switches are pushed to the right.

WARNING! Direct input of USB lines into XBee units or I2C
lines not designed to handle 5V can result in the destruction
of the XBee or I2C components. Could cause fire or serious
injury. Do not plug in a USB cable here if the XBee device is
not designed for it and do not plug in a USB cable here if the
Dip switches are pushed to the right.

2 Current
Measure

Large switch controls whether current measure mode is active or
inactive. When inactive, current can freely flow to the VCC pin of the
XBee. When active, the VCC pin of the XBee is disconnected from the 3.3
V line on the development board. This allows current measurement to
be conducted by attaching a current meter across the jumper P10.

3 Battery
Connector

If desired, a battery can be attached to provide power to the
development board. The voltage can range from 2 V to 5 V. The positive
terminal is on the left.
If the USB-C connector is connected to a computer, the power will be
provided through the USB-C connector and not the battery connector.

4 USB-C
Connector

Connects to your computer and provides the power for the
development board. This is connected to a USB to UART conversion chip
that has the five UART lines passed to the XBee. The UART Dip Switch
can be used to disconnect these UART lines from the XBee.

5 LED indicator Red: UART DOUT (modem sending serial/UART data to host)
Green: UART DIN (modem receiving serial/UART data from host)
White: ON/SLP/DIO9
Blue: Connection Status/DIO5
Yellow: RSSI/PWM0/DIO10

6 User Buttons Comm DIO0 Button connects the Commissioning/DIO0 pin on the XBee
Connector through to a 10 Ω resistor to GND when pressed.

RESET Button Connects to the RESET pin on the XBee Connector to GND
when pressed.

7 Breakout
Connector

This 40 pin connector can be used to connect to various XBee pins as
shown on the silkscreen on the bottom of the board.

Get started XBIB-C-GPS reference

Digi XBee3® 802.15.4 RF Module User Guide 32

Number Item Description

8 UART Dip
Switch

This dip switch allows the user to disconnect any of the primary UART
lines on the XBee from the USB to UART conversion chip. This allows for
testing on the primary UART lines without the USB to UART conversion
chip interfering. Push Dip switches to the right to disconnect the USB to
UART conversion chip from the XBee.

9 Grove
Connector

This connector can be used to attach I2C enabled devices to the
development board. Note that I2C needs to be available on the XBee in
the board for this functionality to be used.
Pin 1: I2C_CLK/XBee DIO1
Pin2: I2C_SDA/XBee DIO11
Pin3: VCC
Pin4: GND

10 Temp/Humidity
Sensor

This as a Texas Instruments HDC1080 temperature and humidity
sensor. This part is accessible through I2C. Be sure that the XBee that is
inserted into the development board has I2C if access to this sensor is
desired.

11 XBee Socket This is the socket for the XBee (TH form factor).

12 XBee Test
Point Pins

Allows easy access for probes for all 20 XBee TH pins. Pin 1 is shorted to
Pin 1 on the XBee and so on.

XBIB-C-GPS reference
This picture shows the XBIB-C-GPS module and the table that follows explains the callouts in the
picture.

Note This board is sold separately. You must also have purchased an XBIB-C through-hole, surface-
mount, or micro-mount development board.

Note For a demonstration of how to use MicroPython to parse some of the GPS NMEA sentences from
the UART, print them and report them to Digi Remote Manager, see Run the MicroPython GPS demo.

Get started XBIB-C-GPS reference

Digi XBee3® 802.15.4 RF Module User Guide 33

Get started Interface with the XBIB-C-GPS module

Digi XBee3® 802.15.4 RF Module User Guide 34

Number Item Description

1 40-pin
header

This header is used to connect the XBIB-C-GPS board to a compatible XBIB
development board. Insert the XBIB-C-GPS module slowly with alternating
pressure on the upper and lower parts of the connector. If added or removed
improperly, the pins on the attached board could bend out of shape.

2 GPS
unit

This is the CAM-M8Q-0-10 module made by u-blox. This is what makes the GPS
measurements. Proper orientation is with the board laying completely flat, with
the module facing towards the sky.

Interface with the XBIB-C-GPS module
The XBee3 802.15.4 RF Module can interface with the XBIB-C-GPS board through the large 40-pin
header. This header is designed to fit into XBIB-C development board. This allows the XBee3 802.15.4
RF Module in the XBIB-C board to communicate with the XBIB-C-GPS board—provided the XBee device
used has MicroPython capabilities (see this link to determine which devices have MicroPython
capabilities). There are two ways to interface with the XBIB-C-GPS board: through the host board’s
Secondary UART or through the I2C compliant lines.
The following picture shows a typical setup:

https://www.digi.com/resources/documentation/Digidocs/90002219/#reference/r_features.htm%3FTocPath%3D_____2

Get started Interface with the XBIB-C-GPS module

Digi XBee3® 802.15.4 RF Module User Guide 35

I2C communication
There are two I2C lines connected to the host board through the 40-pin header, SCL and SDA. I2C
communication is performed over an I2C-compliant Display Data Channel. The XBIB-C-GPS module
operates in slave mode. The maximum frequency of the SCL line is 400 kHz. To access data through
the I2C lines, the data must be queried by the connected XBee3 802.15.4 RF Module.
For more information about I2C Operation see the I2C section of the Digi Micro Python Programming
Guide.
For more information on the operation of the XBIB-C-GPS board see the CAM-M8 datasheet. Other
CAM-M8 documentation is located here.

UART communication
There are two UART pins connected from the XBIB-C-GPS to the host board by the 40-pin header: RX
and TX. By default, the UART on the XBIB-C-GPS board is active and sends GPS readings to the
connected device’s secondary UART pins. Readings are transmitted once every second. The baud rate
of the UART is 9600 baud.
For more information about using Micro Python to communicate to the XBIB-C-GPS module, see Class
UART.

Run the MicroPython GPS demo
The Digi MicroPython github repository contains a GPS demo program that parses some of the GPS
NMEA sentences from the UART, prints them and also reports them to Digi Remote Manager.

Note If you are unfamiliar with MicroPython on XBee you should first run some of the tutorials earlier
in this manual to familiarize yourself with the environment. See Get started with MicroPython. For
more detailed information, refer to the Digi MicroPython Programming Guide.

Step 1: Create a Remote Manager developer account
You must have a Remote Manager developer account to be able to use this program. Make sure you
know the user name and password for this account.
If you don't currently have a Remote Manager developer account, you can create a free developer
account.

Step 2: Download or clone the XBee MicroPython repository

1. Navigate to: https://github.com/digidotcom/xbee-micropython/
2. Click Clone or download.
3. You must either clone or download a zip file of the repository. You can use either method.

n Clone: If you are familiar with GIT, follow the standard GIT process to clone the
repository.

n Download
a. Click Download zip to download a zip file of the repository to the download

folder of your choosing.
b. Extract the repository to a location of your choosing on your hard drive.

https://www.digi.com/resources/documentation/Digidocs/90002219/#reference/r_class_i2c.htm%3FTocPath%3DMachine%2520module|Class%2520I2C%253A%2520two-wire%2520serial%2520protocol|_____0
https://www.digi.com/resources/documentation/Digidocs/90002219/#reference/r_class_i2c.htm%3FTocPath%3DMachine%2520module|Class%2520I2C%253A%2520two-wire%2520serial%2520protocol|_____0
https://www.u-blox.com/sites/default/files/CAM-M8-FW3_DataSheet_(UBX-15031574).pdf
https://www.u-blox.com/en/product/cam-m8-series#tab-documentation-resources
https://www.digi.com/resources/documentation/Digidocs/90002219/#reference/r_class_uart.htm%3FTocPath%3DMachine%2520module|Class%2520UART|_____0
https://www.digi.com/resources/documentation/Digidocs/90002219/#reference/r_class_uart.htm%3FTocPath%3DMachine%2520module|Class%2520UART|_____0
https://www.digi.com/resources/documentation/digidocs/90002219/
http://myacct.digi.com/
http://myacct.digi.com/

Get started Interface with the XBIB-C-GPS module

Digi XBee3® 802.15.4 RF Module User Guide 36

Step 3: Edit the MicroPython file

1. Navigate to the location of the repository zip file that you created in Step 2.
2. Navigate to: samples/gps
3. Open the MicroPython file: gpsdemo1.py

4. Using the editor of your choice, edit the MicroPython file. At the top of the file, enter the user
name and password for your Remote Manager developer account. The correct location is
indicated in the comments in the file.

Step 4: Run the program

1. Rename the file you edited in Step 3 from gpsdemo1.py tomain.py.
2. Copy the renamed file onto your device's root filesystem directory.
3. Copy the following three modules from the locations specified below into your device's /lib

directory:
n From the /lib directory of the Digi xbee-micropython repository: urequest.py and

remotemanager.py

n From the /lib/sensor directory of the Digi xbee-micropython repository: hdc1080.py

Note These modules are required to be able to run the gpsdemo1.py.

4. Open XCTU and use the MicroPython Terminal to run the demo.
5. Type <CTRL>-R from the MicroPython prompt to run the code.

Get started with MicroPython

This user guide provides an overview of how to use MicroPython with the XBee3 802.15.4 RF Module.
For in-depth information andmore complex code examples, refer to the Digi MicroPython
Programming Guide. Continue with this user guide for simple examples to get started using
MicroPython on the XBee3 802.15.4 RF Module.

About MicroPython 38
MicroPython on the XBee3 802.15.4 RF Module 38
Use XCTU to enter the MicroPython environment 38
Use the MicroPython Terminal in XCTU 39
MicroPython examples 39
Exit MicroPython mode 47
Other terminal programs 48
Use picocom in Linux 49
Micropython help () 50

Digi XBee3® 802.15.4 RF Module User Guide 37

https://www.digi.com/resources/documentation/Digidocs/90002219/
https://www.digi.com/resources/documentation/Digidocs/90002219/

Get started with MicroPython About MicroPython

Digi XBee3® 802.15.4 RF Module User Guide 38

About MicroPython
MicroPython is an open-source programming language based on Python 3.0, with much of the same
syntax and functionality, but modified to fit on small devices with limited hardware resources, such as
an XBee3 802.15.4 RF Module.
For more information about MicroPython, see www.micropython.org.
For more information about Python, see www.python.org.

MicroPython on the XBee3 802.15.4 RF Module
The XBee3 802.15.4 RF Module has MicroPython running on the device itself. You can access a
MicroPython prompt from the XBee3 802.15.4 RF Module when you install it in an appropriate
development board (XBDB or XBIB), and connect it to a computer via a USB cable.

Note MicroPython is only available through the UART interface and does not work with SPI.

Note MicroPython programming on the device requires firmware version 2003 or newer.

The examples in this user guide assume:

n You have XCTU on your computer. See Configure the device using XCTU.
n You have a serial terminal program installed on your computer. For more information, see Use

the MicroPython Terminal in XCTU. This requires XCTU 6.3.10 or higher.
n You have an XBee3 802.15.4 RF Module installed on an appropriate development board such as

an XBIB-U-DEV or an XBDB-U-ZB.

n The XBee3 802.15.4 RF Module is connected to the computer via a USB cable and XCTU
recognizes it.

Use XCTU to enter the MicroPython environment
To use the XBee3 802.15.4 RF Module in the MicroPython environment:

1. Use XCTU to add the device(s); see Configure the device using XCTU and Add devices to XCTU.
2. The XBee3 802.15.4 RF Module appears as a box in the Radio Modules information panel. Each

module displays identifying information about itself.
3. Click this box to select the device and load its current settings.

Note To ensure that MicroPython is responsive to input, Digi recommends setting the XBee
UART baud rate to 115200 baud. To set the UART baud rate, select 115200 [7] in the BD field
and click the Write button. We strongly recommend using hardware flow control to avoid data
loss, especially when pasting large amounts of code or text. For more information, see UART
flow control.

4. To put the XBee3 802.15.4 RF Module into MicroPython mode, in the AP field select

MicroPython REPL [4] and click the Write button .
5. Note which COM port the XBee3 802.15.4 RF Module is using, because you will need this

information when you use the MicroPython terminal.

https://micropython.org/
https://www.python.org/
https://www.digi.com/products/xbee-rf-solutions/xctu-software/xctu#productsupport-utilities
https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#concept/c_populate_device_list.htm

Get started with MicroPython Use the MicroPython Terminal in XCTU

Digi XBee3® 802.15.4 RF Module User Guide 39

Use the MicroPython Terminal in XCTU
You can use the MicroPython Terminal to communicate with the XBee3 802.15.4 RF Module when it is
in MicroPython mode.1 This requires XCTU 6.3.10 or higher. To enter MicroPython mode, follow the
steps in Use XCTU to enter the MicroPython environment. To use the MicroPython Terminal:

1. Click the Tools drop-downmenu and select MicroPython Terminal. The terminal window
opens.

2. Click Open to open the Serial Port Configuration window.
3. In the Select the Serial/USB port area, click the COM port that the device uses.
4. Verify that the baud rate and other settings are correct.

5. Click OK. The Open icon changes to Close , indicating that the device is properly connected.

If the >>> prompt appears, you are connected properly. You can now type or paste MicroPython code
in the terminal.

MicroPython examples
This section provides examples of how to use some of the basic functionality of MicroPython with the
XBee3 802.15.4 RF Module.

Example: hello world
1. At the MicroPython >>> prompt, type the Python command: print("Hello, World!")

2. Press Enter to execute the command. The terminal echos back Hello, World!

Example: enter MicroPython paste mode
In the following examples it is helpful to know that MicroPython supports paste mode, where you can
copy a large block of code from this user guide and paste it instead of typing it character by character.
To use paste mode:

1. Copy the code you want to run. For example, copy the following code that is the code from the
"Hello world" example:

print("Hello World")

Note You can easily copy and paste code from the online version of this guide. Use caution with the
PDF version, as it may not maintain essential indentations.

2. In the terminal, at the MicroPython >>> prompt type Ctrl-+E to enter paste mode. The terminal
displays paste mode; Ctrl-C to cancel, Ctrl-D to finish.

3. Right-click in the MicroPython terminal window and click Paste or press Ctrl+Shift+V to paste.
4. The code appears in the terminal occupying one line. Each line starts with its line number and

three "=" symbols. For example, line 1 starts with 1===.

1See Other terminal programs if you do not use the MicroPython Terminal in XCTU.

http://docs.micropython.org/en/latest/pyboard/reference/repl.html#paste-mode
http://www.digi.com/resources/documentation/Digidocs/90002258/

Get started with MicroPython MicroPython examples

Digi XBee3® 802.15.4 RF Module User Guide 40

5. If the code is correct, press Ctrl+D to run the code; “Hello World” should print.

Note If you want to exit paste mode without running the code, or if the code did not copy
correctly, press Ctrl+C to cancel and return to the normal MicroPython >>> prompt).

Example: using the time module
The time module is used for time-sensitive operations such as introducing a delay in your routine or a
timer.
The following time functions are supported by the XBee3 802.15.4 RF Module:

n ticks_ms() returns the current millisecond counter value. This counter rolls over at
0x40000000.

n ticks_diff() compares the difference between two timestamps in milliseconds.
n sleep() delays operation for a set number of seconds.
n sleep_ms() delays operation for a set number of milliseconds.
n sleep_us() delays operation for a set number of microseconds.

Note The standard time.time() function cannot be used, because this function produces the number
of seconds since the epoch. The XBee3 module lacks a realtime clock and cannot provide any date or
time data.

The following example exercises the various sleep functions and uses ticks_diff() to measure
duration:

import time

start = time.ticks_ms() # Get the value from the millisecond counter

time.sleep(1) # sleep for 1 second
time.sleep_ms(500) # sleep for 500 milliseconds
time.sleep_us(1000) # sleep for 1000 microseconds

delta = time.ticks_diff(time.ticks_ms(), start)

print("Operation took {} ms to execute".format(delta))

Example: AT commands using MicroPython
AT commands control the XBee3 802.15.4 RF Module. The "AT" is an abbreviation for "attention", and
the prefix "AT" notifies the module about the start of a command line. For a list of AT commands that
can be used on the XBee3 802.15.4 RF Module, see AT commands.
MicroPython provides an atcmd() method to process AT commands, similar to how you can use
Commandmode or API frames.
The atcmd() method accepts two parameters:

1. The two character AT command, entered as a string.
2. An optional second parameter used to set the AT command value. If this parameter is not

provided, the AT command is queried instead of being set. This value is an integer, bytes object,
or string, depending on the AT command.

Get started with MicroPython MicroPython examples

Digi XBee3® 802.15.4 RF Module User Guide 41

Note The xbee.atcmd() method does not support the following AT commands: IS, AS, ED, ND, or DN.

The following is example code that queries and sets a variety of AT commands using xbee.atcmd():

import xbee

Set the NI string of the radio
xbee.atcmd("NI", "XBee3 module")

Configure a destination address using two different data types
xbee.atcmd("DH", 0x0013A200) # Hex
xbee.atcmd("DL", b'\x12\x25\x89\xF5') # Bytes

Read some AT commands and display the value and data type:
print("\nAT command parameter values:")
commands =["DH", "DL", "NI", "CK"]
for cmd in commands:

val = xbee.atcmd(cmd)
print("{}: {:20} of type {}".format(cmd, repr(val), type(val)))

This example code outputs the following:

AT command parameter values:
DH: b'\x00\x13\xa2\x00' of type <class 'bytes'>
DL: b'\x12%\x89\xf5' of type <class 'bytes'>
NI: 'XBee3 module' of type <class 'str'>
CK: 65535 of type <class 'int'>

Note Parameters that store values larger than 16-bits in length are represented as bytes. Python
attempts to print out ASCII characters whenever possible, which can result in some unexpected
output (such as the "%" in the above output). If you want the output from MicroPython to match
XCTU, you can use the following example to convert bytes to hex:

dl_value = xbee.atcmd("DL")
hex_dl_value = hex(int.from_bytes(dl_value, 'big'))

MicroPython networking and communication examples
This section provides networking and communication examples for using MicroPython with the XBee3
802.15.4 RF Module.

802.15.4 networks with MicroPython
For small networks, it is suitable to use MicroPython on every node. However, there are some inherit
limitations that may prevent you from using MicroPython on some heavily trafficked nodes:

n When running MicroPython, any receivedmessages will be stored in a small receive queue. This
queue only has room for 4 packets andmust be regularly read to prevent data loss. For
networks that will be generating a lot of traffic, the data aggregator may need to operate in
API mode in order to capture all incoming data.

For the examples in this section, the devices should be pre-configured with identical network settings
so that RF communication is possible. To follow the upcoming examples, we need to configure a
second XBee3 802.15.4 RF Module to use MicroPython.
XCTU only allows a single MicroPython terminal. We will be running example code on both modules,
which requires a second terminal window.

Get started with MicroPython MicroPython examples

Digi XBee3® 802.15.4 RF Module User Guide 42

Open a second instance of XCTU, and configure a different XBee3 module for MicroPython following
the steps in Use XCTU to enter the MicroPython environment.

Example: network Discovery using MicroPython
The xbee.discover() method returns an iterator that blocks while waiting for results, similar to
executing an ND request. For more information, see ND (Network Discover).
Each result is a dictionary with fields based on an ND response:

n sender_nwk: 16-bit network address.
n sender_eui64: 8-byte bytes object with EUI-64 address.
n parent_nwk: Set to 0xFFFE on the coordinator and routers; otherwise, this is set to the

network address of the end device's parent.
n node_id: The device's NI value (a string of up to 20 characters, also referred to as Node

Identification).
n node_type: Value of 0, 1 or 2 for coordinator, router, or end device.
n device_type: The device's 32-bit DD value, also referred to as Digi Device Type; this is used to

identify different types of devices or hardware.
n rssi: Relative signal strength indicator (in dBm) of the node discovery request packet received

by the sending node.

Note When printing the dictionary, fields for device_type, sender_nwk and parent_nwk appear in
decimal form. You can use the MicroPython hex() method to print an integer in hexadecimal. Check
the function code for format_eui64 from the Example: communication between two XBee3 802.15.4
modules topic for code to convert the sender_eui64 field into a hexadecimal string with a colon
between each byte value.

Use the following example code to perform a network discovery:

import xbee, time

Set the network discovery options to include self
xbee.atcmd("NO", 2)
xbee.atcmd("AC")
time.sleep(.5)

Perform Network Discovery and print out the results
print ("Network Discovery in process...")
nodes = list(xbee.discover())
if nodes:

for node in nodes:
print("\nRadio discovered:")
for key, value in node.items():

print("\t{:<12} : {}".format(key, value))

Set NO back to the default value
xbee.atcmd("NO", 0)
xbee.atcmd("AC")

This produces the following output from two discovered nodes:

Radio discovered:
rssi : -63
node_id : Coordinator

Get started with MicroPython MicroPython examples

Digi XBee3® 802.15.4 RF Module User Guide 43

device_type : 1179648
parent_nwk : 65534
sender_nwk : 0
sender_eui64 : b'\x00\x13\xa2\xff h\x98T'
node_type : 0

Radio discovered:
rssi : -75
node_id : Router
device_type : 1179648
parent_nwk : 65534
sender_nwk : 23125
sender_eui64 : b'\x00\x13\xa2\xffh\x98c&'
node_type : 1

Examples: transmitting data
This section provides examples for transmitting data using MicroPython. These examples assume you
have followed the above examples and the two radios are on the same network.

Example: transmit message
Use the xbee module to transmit a message from the XBee3 Zigbee device. The transmit() function
call consists of the following parameters:

1. The Destination Address, which can be any of the following:
n Integer for 16-bit addressing
n 8-byte bytes object for 64-bit addressing
n Constant xbee.ADDR_BROADCAST to indicate a broadcast destination
n Constant xbee.ADDR_COORDINATOR to indicate the coordinator

2. The Message as a character string.

If the message is sent successfully, transmit() returns None. If the transmission fails due to an ACK
failure or lack of free buffer space on the receiver, the sent packet will be silently discarded.

Example: transmit a message to the network coordinator

1. From the router, access the MicroPython environment.
2. At the MicroPython >>> prompt, type import xbee and press Enter.
3. At the MicroPython >>> prompt, type xbee.transmit(xbee.ADDR_COORDINATOR, "Hello

World!") and press Enter.
4. On the coordinator, you can issue an xbee.receive() call to output the received packet.

Example: transmit custom messages to all nodes in a network
This program performs a network discovery and sends the message 'Hello <Destination Node
Identifier>!' to individual nodes in the network. For more information, see Example: network
Discovery using MicroPython.

import xbee

Perform a network discovery to gather destination address:
print("Discovering remote nodes, please wait...")
node_list = list(xbee.discover())
if not node_list:

Get started with MicroPython MicroPython examples

Digi XBee3® 802.15.4 RF Module User Guide 44

raise Exception("Network discovery did not find any remote devices")

for node in node_list:
dest_addr = node['sender_nwk'] # 'sender_eui64' can also be used
dest_node_id = node['node_id']
payload_data = "Hello, " + dest_node_id + "!"

try:
print("Sending \"{}\" to {}".format(payload_data, hex(dest_addr)))
xbee.transmit(dest_addr, payload_data)

except Exception as err:
print(err)

print("complete")

Receiving data
Use the receive() function from the xbee module to receive messages. When MicroPython is active on
a device (AP is set to 4), all incoming messages are saved to a receive queue within MicroPython. This
receive queue is limited in size and only has room for 4 messages. To ensure that data is not lost, it is
important to continuously iterate through the receive queue and process any of the packets within.
If the receive queue is full and another message is sent to the device, it will not acknowledge the
packet and the sender generates a failure status of 0x24 (Address not found).
The receive() function returns one of the following:

n None: No message (the receive queue is empty).
n Message dictionary consisting of:

l sender_nwk: 16-bit network address of the sending node.
l sender_eui64: 64-bit address (as a "bytes object") of the sending node.
l source_ep: source endpoint as an integer.
l dest_ep: destination endpoint as an integer.
l cluster: cluster id as an integer.
l profile: profile id as an integer.
l broadcast: True or False depending on whether the frame was broadcast or unicast.
l payload: "Bytes object" of the payload. This is a bytes object instead of a string, because

the payload can contain binary data.

Example: continuously receive data
In this example, the format_packet() helper formats the contents of the dictionary and format_eui64
() formats the bytes object holding the EUI-64. The while loop shows how to poll for packets
continually to ensure that the receive buffer does not become full.

def format_eui64(addr):
return ':'.join('%02x' % b for b in addr)

def format_packet(p):
type = 'Broadcast' if p['broadcast'] else 'Unicast'
print("%s message from EUI-64 %s (network 0x%04X)" % (type,

format_eui64(p['sender_eui64']), p['sender_nwk']))
print(" from EP 0x%02X to EP 0x%02X, Cluster 0x%04X, Profile 0x%04X:" %

(p['source_ep'], p['dest_ep'], p['cluster'], p['profile']))
print(p['payload'])

Get started with MicroPython MicroPython examples

Digi XBee3® 802.15.4 RF Module User Guide 45

import xbee, time
while True:

print("Receiving data...")
print("Press CTRL+C to cancel.")
p = xbee.receive()
if p:

format_packet(p)
else:

time.sleep(0.25) # wait 0.25 seconds before checking again

If this node had previously received a packet, it outputs as follows:

Unicast message from EUI-64 00:13:a2:00:41:74:ca:70 (network 0x6D81)
from EP 0xE8 to EP 0xE8, Cluster 0x0011, Profile 0xC105:

b'Hello World!'

Note Digi recommends calling the receive() function in a loop so no data is lost. On modules where
there is a high volume of network traffic, there could be data lost if the messages are not pulled from
the queue fast enough.

Example: communication between two XBee3 802.15.4 modules
This example combines all of the previous examples and represents a full application that configures a
network, discovers remote nodes, and sends and receives messages.
First, we will upload some utility functions into the flash space of MicroPython so that the following
examples will be easier to read.
Complete the following steps to compile and execute utility functions using flash mode on both
devices:

1. Access the MicroPython environment.
2. Press Ctrl + F.
3. Copy the following code:

import xbee, time
Utility functions to perform XBee3 802.15.4 operations
def format_eui64(addr):

return ':'.join('%02x' % b for b in addr)

def format_packet(p):
type = 'Broadcast' if p['broadcast'] else 'Unicast'
print("%s message from EUI-64 %s (network 0x%04X)" %

(type, format_eui64(p['sender_eui64']), p['sender_nwk']))
print("from EP 0x%02X to EP 0x%02X, Cluster 0x%04X, Profile 0x%04X:" %

(p['source_ep'], p['dest_ep'], p['cluster'], p['profile']))
print(p['payload'],"\n")

def network_status():
If the value of AI is non zero, the module is not connected to a network
return xbee.atcmd("AI")

4. At the MicroPython 1^^^ prompt, right-click and select the Paste option.
5. Press Ctrl+D to finish. The code is uploaded to the flash memory and then compiled. At the

"Automatically run this code at startup" [Y/N]?" prompt, select Y.

Get started with MicroPython MicroPython examples

Digi XBee3® 802.15.4 RF Module User Guide 46

6. Press Ctrl+R to run the compiled code; this provides access to these utility functions for the
next examples.

WARNING! MicroPython code stored in flash is saved in the file system as main.py. If the
file system has not been formatted, then the following error is generated:
OSError: [Errno 7019] ENODEV
The file system can be formatted in one of three ways:
In XCTU by using the File System Manager.
In Commandmode using the ATFS FORMAT confirm command—see FS (File System).
In MicroPython by issuing the following code:

import os
os.format()

Example code on the coordinator module
The following example code forms an 802.15.4 network as a coordinator, performs a network
discovery to find the remote node, and continuously prints out any incoming data.

1. Access the MicroPython environment.
2. Copy the following sample code:

print("Forming a new 802.15.4 network as a coordinator...")
xbee.atcmd("NI", "Coordinator")
network_settings = {"CE": 1, "A2": 4, "CH": 0x13, "MY": 0xFFFF, "ID": 0x3332,
"EE": 0}
for command, value in network_settings.items():

xbee.atcmd(command, value)
xbee.atcmd("AC") # Apply changes
time.sleep(1)

while network_status() != 0:
time.sleep(0.1)

print("Network Established\n")

print("Waiting for a remote node to join...")
node_list = []
while len(node_list) == 0:

Perform a network discovery until the remote joins
node_list = list(xbee.discover())

print("Remote node found, transmitting data")

for node in node_list:
dest_addr = node['sender_eui64'] # using 64-bit addressing
dest_node_id = node['node_id']
payload_data = "Hello, " + dest_node_id + "!"

print("Sending \"{}\" to {}".format(payload_data, hex(dest_addr)))
xbee.transmit(dest_addr, payload_data)

Start the receive loop
print("Receiving data...")
print("Hit CTRL+C to cancel")
while True:

p = xbee.receive()
if p:

https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_interact_with_xbee_file_system.htm

Get started with MicroPython Exit MicroPython mode

Digi XBee3® 802.15.4 RF Module User Guide 47

format_packet(p)
else:

time.sleep(0.25)

3. Press Ctrl+E to enter paste mode.
4. At the MicroPython >>> prompt, right-click and select the Paste option. Once you paste the

code, it executes immediately.

Example code on the remote module
The following example code joins the 802.15.4 network from the previous example, and continuously
prints out any incoming data. This device also sends its temperature data every 5 seconds to the
coordinator address.

1. Access the MicroPython environment.
2. Copy the following sample code:

print("Joining network as an end device...")
xbee.atcmd("NI", "End Device")
network_settings = {"CE": 0, "A1": 4, "CH": 0x13, "ID": 0x3332, "EE": 0}
for command, value in network_settings.items():

xbee.atcmd(command, value)
xbee.atcmd("AC") # Apply changes
time.sleep(1)

while network_status() != 0:
time.sleep(0.1)

print("Connected to Network\n")

last_sent = time.ticks_ms()
interval = 5000 # How often to send a message

Start the transmit/receive loop
print("Sending temp data every {} seconds".format(interval/1000))
while True:

p = xbee.receive()
if p:

format_packet(p)
else:

Transmit temperature if ready
if time.ticks_diff(time.ticks_ms(), last_sent) > interval:

temp = "Temperature: {}C".format(xbee.atcmd("TP"))
print("\tsending " + temp)
try:

xbee.transmit(xbee.ADDR_COORDINATOR, temp)
except Exception as err:

print(err)
last_sent = time.ticks_ms()

time.sleep(0.25)

3. Press Ctrl+E to enter paste mode.
4. At the MicroPython >>> prompt, right-click and select the Paste option. Once you paste the

code, it executes immediately.

Exit MicroPython mode
To exit MicroPython mode:

Get started with MicroPython Other terminal programs

Digi XBee3® 802.15.4 RF Module User Guide 48

1. In the XCTU MicroPython terminal, click the green Close button .
2. Click Close at the bottom of the terminal to exit the terminal.

3. In XCTU's Configuration working mode , change AP API Enable to another mode and click

the Write button . We recommend changing to Transparent mode [0], as most of the
examples use this mode.

Other terminal programs
If you do not use the MicroPython terminal in XCTU, you can use other terminal programs to
communicate with the XBee3 802.15.4 RF Module. If you use Microsoft Windows, follow the
instructions for Tera Term; if you use Linux, follow the instructions for picocom. To download these
programs:

n Tera Term for Windows, see ttssh2.osdn.jp/index.html.en.
n Picocom for Linux, see developer.ridgerun.com/wiki/index.php/Setting_up_Picocom_-_Ubuntu
n Source code and in-depth information, see github.com/npat-efault/picocom.

Tera Term for Windows
With the XBee3 802.15.4 RF Module in MicroPython mode (AP = 4), you can access the MicroPython
prompt using a terminal.

1. Open Tera Term. The Tera Term: New connection window appears.
2. Click the Serial radio button to select a serial connection.
3. From the Port: drop-downmenu, select the COM port that the XBee3 802.15.4 RF Module is

connected to.
4. Click OK. The COMxx - Tera Term VT terminal window appears and Tera Term attempts to

connect to the device at a baud rate of 9600 bps. The terminal will not allow communication
with the device since the baud rate setting is incorrect. You must change this rate as it was
previously set to 115200 bps.

5. Click Setup and Serial Port. The Tera Term: Serial port setup window appears.

6. In the Tera Term: Serial port setup window, set the parameters to the following values:
n Port: Shows the port that the XBee3 802.15.4 RF Module is connected on.
n Baud rate: 115200

https://ttssh2.osdn.jp/index.html.en
https://developer.ridgerun.com/wiki/index.php/Setting_up_Picocom_-_Ubuntu
https://github.com/npat-efault/picocom

Get started with MicroPython Use picocom in Linux

Digi XBee3® 802.15.4 RF Module User Guide 49

n Data: 8 bit
n Parity: none
n Stop: 1 bit
n Flow control: hardware
n Transmit delay: N/A

7. Click OK to apply the changes to the serial port settings. The settings should go into effect
right away.

8. To verify that local echo is not enabled and that extra line-feeds are not enabled:
a. In Tera Term, click Setup and select Terminal.
b. In the New-line area of the Tera Term: Serial port setup window, click the

Receive drop-downmenu and select AUTO if it does not already show that value.
c. Make sure the Local echo box is not checked.

9. Click OK.
10. Press Ctrl+B to get the MicroPython version banner and prompt.

MicroPython v1.9.3-716-g507d0512 on 2018-02-20; XBee3 802.15.4 with EFR32MG
Type "help()" for more information.
>>>

Now you can type MicroPython commands at the >>> prompt.

Use picocom in Linux
With the XBee3 802.15.4 RF Module in MicroPython mode (AP = 4), you can access the MicroPython
prompt using a terminal.

Note The user must have read and write permission for the serial port the XBee3 802.15.4 RF Module
is connected to in order to communicate with the device.

1. Open a terminal in Linux and type picocom -b 115200 /dev/ttyUSB0. This assumes you have
no other USB-to-serial devices attached to the system.

2. Press Ctrl+B to get the MicroPython version banner and prompt. You can also press Enter to
bring up the prompt.

If you do have other USB-to-serial devices attached:

1. Before attaching the XBee3 802.15.4 RF Module, check the directory /dev/ for any devices
named ttyUSBx, where x is a number. An easy way to list these is to type: ls /dev/ttyUSB*.
This produces a list of any device with a name that starts with ttyUSB.

2. Take note of the devices present with that name, and then connect the XBee3 802.15.4 RF
Module.

3. Check the directory again and you should see one additional device, which is the XBee3
802.15.4 RF Module.

4. In this case, replace /dev/ttyUSB0 at the top with /dev/ttyUSB<number>, where <number>
is the new number that appeared.

It connects and shows "Terminal ready".

Get started with MicroPython Micropython help ()

Digi XBee3® 802.15.4 RF Module User Guide 50

You can now type MicroPython commands at the >>> prompt.

Micropython help ()
When you type the help() command at the prompt, it provides a link to online help, control commands
and also usage examples.

>>> help()
Welcome to MicroPython!
For online docs please visit http://docs.micropython.org/.
Control commands:
CTRL-A -- on a blank line, enter raw REPL mode
CTRL-B -- on a blank line, enter normal REPL mode
CTRL-C -- interrupt a running program
CTRL-D -- on a blank line, reset the REPL
CTRL-E -- on a blank line, enter paste mode
CTRL-F -- on a blank line, enter flash upload mode
For further help on a specific object, type help(obj)
For a list of available modules, type help('modules')

--

When you type help('modules') at the prompt, it displays all available Micropython modules.

--
>>> help('modules')
__main__ io time uos
array json ubinascii ustruct
binascii machine uerrno utime

Get started with MicroPython Micropython help ()

Digi XBee3® 802.15.4 RF Module User Guide 51

builtins micropython uhashlib xbee
errno os uio
gc struct ujson
hashlib sys umachine

Plus any modules on the filesystem

--

When you import a module and type help() with the module as the object, you can query all the
functions that the object supports.

--
>>> import sys
>>> help(sys)
object <module 'sys'> is of type module
__name__ -- sys
path -- ['', '/flash', '/flash/lib']
argv -- ['']
version -- 3.4.0
version_info -- (3, 4, 0)
implementation -- ('micropython', (1, 10, 0))
platform -- xbee3-802.15.4
byteorder -- little
maxsize -- 2147483647
exit -- <function>
stdin -- <io.FileIO 0>
stdout -- <io.FileIO 1>
stderr -- <io.FileIO 2>
modules -- {}
print_exception -- <function>

File system

For detailed information about using MicroPython on the XBee3 802.15.4 RF Module refer to the Digi
MicroPython Programming Guide.

Overview of the file system 53
Directory structure 53
Paths 53
Limitations 53
XCTU interface 54

Digi XBee3® 802.15.4 RF Module User Guide 52

https://www.digi.com/resources/documentation/Digidocs/90002219/
https://www.digi.com/resources/documentation/Digidocs/90002219/

File system Overview of the file system

Digi XBee3® 802.15.4 RF Module User Guide 53

Overview of the file system
XBee3 802.15.4 RF Module firmware versions 2003 and later include support for storing files in
internal flash memory.

CAUTION! You need to format the file system if upgrading a device that originally shipped
with older firmware. You can use XCTU, AT commands or MicroPython for that initial format
or to erase existing content at any time.

Note To use XCTU with file system, you need XCTU 6.4.0 or newer.

See FS FORMAT confirm in FS (File System) and ensure that the format is complete.

Directory structure
The XBee3 802.15.4 RF Module's internal flash appears in the file system as /flash, the only entry at
the root level of the file system. Files and directories other than /flash cannot be created within the
root directory, only within /flash. By default /flash contains a lib directory intended for MicroPython
modules.

Paths
The XBee3 802.15.4 RF Module stores all of its files in the top-level directory /flash. On startup, the
ATFS commands and MicroPython each use that directory as their current working directory. When
specifying the path to a file or directory, it is interpreted as follows:

n Paths starting with a forward slash are "absolute" andmust start with /flash to be valid.
n All other paths are relative to the current working directory.
n The directory .. refers to the parent directory, so an operation on ../filename.txt that takes

place in the directory /flash/test accesses the file /flash/filename.txt.
n The directory . refers to the current directory, so the command ATFS ls . lists files in the

current directory.
n Names are case-insensitive, so FILE.TXT, file.txt and FiLe.TxT all refer to the same file.
n File and directory names are limited to 64 characters, and can only contain letters, numbers,

periods, dashes and underscores. A period at the end of the name is ignored.
n The full, absolute path to a file or directory is limited to 255 characters.

Limitations
The file system on the XBee3 802.15.4 RF Module has a few limitations when compared to
conventional file systems:

n When a file on the file system is deleted, the space it was using is not reclaimed. The only way
to reclaim space that has been used is by formatting the file system. The FS INFO command
shows how much space is available and how much space is being used by deleted files.

n The file system can only have one file open for writing at a time.
n The file system cannot create new directories while a file is open for writing.

File system XCTU interface

Digi XBee3® 802.15.4 RF Module User Guide 54

n Files cannot be renamed.
n The contents of the file system will be lost when any firmware update is performed. See OTA

file system upgrades for information on how to put files on a device after an OTA firmware
update.

XCTU interface
XCTU releases starting with 6.4.0 include a File System Manager in the Tools menu. You can upload
files to and download files from the device, in addition to renaming and deleting existing files and
directories. See the File System manager tool section of the XCTU User Guide for details of its
functionality.

https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#reference/r_file_system_manager_tool.htm
https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm

Get started with BLE

Bluetooth® Low Energy (BLE) is a RF protocol that enables you to connect your XBee device to
another device. Both devices must have BLE enabled.
For example, you can use your cellphone to connect to your XBee device, and then from your phone,
configure and program the device.

Enable BLE on the XBee3 802.15.4 RF Module 56
Enable BLE and configure the BLE password 56
Get the Digi XBee Mobile phone application 57
Connect with BLE and configure your XBee3 device 58

Digi XBee3® 802.15.4 RF Module User Guide 55

Get started with BLE Enable BLE on the XBee3 802.15.4 RF Module

Digi XBee3® 802.15.4 RF Module User Guide 56

Enable BLE on the XBee3 802.15.4 RF Module
To enable BLE on a XBee3 802.15.4 RF Module and verify the connection:

1. Set up the XBee3 802.15.4 RF Module andmake sure to connect the antenna to the device.
2. Enable BLE and configure the BLE password.
3. Get the Digi XBee Mobile phone application.
4. Connect with BLE and configure your XBee3 device.

Note The BLE protocol is disabled on the XBee3 802.15.4 RF Module by default. You can create a
custom factory default configuration that ensures BLE is always enabled. See Custom configuration:
Create a new factory default.

Enable BLE and configure the BLE password
Some of the latest XBee3 devices support Bluetooth Low Energy (BLE) as an extra interface for
configuration. If you want to use this feature, you have to enable BLE. You must also enable security by
setting a password on the XBee3 802.15.4 RF Module in order to connect, configure, or send data over
BLE.
Use XCTU to configure the BLE password. Make sure you have installed or updated XCTU to version
6.4.2 or newer. Earlier versions of XCTU do not include the BLE configuration features. See Download
and install XCTU for installation instructions.
Before you begin, you should determine the password you want to use for BLE on the XBee3 802.15.4
RF Module and store it in a secure place. We recommend a secure password of at least eight
characters and a random combination of letters, numbers, and special characters. We recommend
using a security management tool such as LastPass or Keepass for generating and storing passwords
for many devices.

Note When you enter the BLE password in XCTU, the salt and verifier values are calculated as you set
your password. For more information on how these values are used in the authentication process, see
BLE Unlock API frame - 0x2C.

1. Launch XCTU.

2. Switch to Configuration working mode .
3. Select a BLE compatible radio module from the device list.
4. Select Enabled[1] from the BT Bluetooth Enable command drop-down.

5. Click the Write setting button . The Bluetooth authentication not set dialog appears.

Note If BLE has been previously configured, the Bluetooth authentication not set dialog does not
appear. If this happens, click Configure in the Bluetooth Options section to display the Configure
Bluetooth Authentication dialog.

https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#concept/c_downloading_installing_xctu.htm%3FTocPath%3DDownload%2520and%2520install%2520XCTU|_____0
https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#concept/c_downloading_installing_xctu.htm%3FTocPath%3DDownload%2520and%2520install%2520XCTU|_____0

Get started with BLE Get the Digi XBee Mobile phone application

Digi XBee3® 802.15.4 RF Module User Guide 57

6. Click Configure in the dialog. The Configure Bluetooth Authentication dialog appears.
7. In the Password field, type the password for the device. As you type, the Salt and Verifier fields

are automatically calculated and populated in the dialog as shown above. This password is
used when you connect to this XBee device via BLE using the Digi XBee Mobile app.

8. Click OK to save the configuration.

Get the Digi XBee Mobile phone application
To see the nearby devices that have BLE enabled, you must get the free Digi XBee Mobile application
from the iOS App Store or Google Play and downloaded to your phone.

1. On your phone, go to the App store.
2. Search for: Digi XBee Mobile.
3. Download and install the app.

The Digi is compatible with the following operating systems and versions:

Get started with BLE Connect with BLE and configure your XBee3 device

Digi XBee3® 802.15.4 RF Module User Guide 58

n Android 5.0 or higher
n iOS 11 or higher

Connect with BLE and configure your XBee3 device
You can use the Digi XBee Mobile application to verify that BLE is enabled on your XBee device.

1. Get the Digi XBee Mobile phone application.
2. Open the Digi XBee Mobile application. The Find XBee devices screen appears and the app

automatically begins scanning for devices. All nearby devices with BLE enabled are displayed in
a list.

3. Scroll through the list to find your XBee device.
The first time you open the app on a phone and scan for devices, the device list contains only
the name of the device and the BLE signal strength. No identifying information for the device
displays. After you have authenticated the device, the device information is cached on the
phone. The next time the app on this phone connects to the XBee device, the IMEI for the
device displays in the app device list.

Note The IMEI is derived from the SH and SL values.

4. Tap the XBee device name in the list. A password dialog appears.
5. Enter the password you previously configured for the device in XCTU.
6. TapOK. The Device Information screen displays. You can now scroll through the settings for

the device and change the device's configuration as needed.

BLE reference

BLE advertising behavior and services 60
Device Information Service 60
XBee API BLE Service 60
API Request characteristic 60
API Response characteristic 61

Digi XBee3® 802.15.4 RF Module User Guide 59

BLE reference BLE advertising behavior and services

Digi XBee3® 802.15.4 RF Module User Guide 60

BLE advertising behavior and services
When the Bluetooth radio is enabled, periodic BLE advertisements are transmitted. The
advertisement data includes the product name in the Complete Local Name field. When an XBee
device connects to the Bluetooth radio, the BLE services are listed:

n Device Information Service
n XBee API BLE Service

Device Information Service
The standard Device Information Service is used. The Manufacturer, Model, and Firmware Revision
characters are provided inside the service.

XBee API BLE Service
You can configure the XBee3 802.15.4 RF Module through the BLE interface using API frame requests
and responses. The API frame format through Bluetooth is equivalent to setting AP = 1 and
transmitting the frames over the UART or SPI interface. API frames can be executed over Bluetooth
regardless of the AP setting.
The BLE interface allows these frames:

n BLE Unlock API frame - 0x2C
n BLE Unlock Response frame - 0xAC
n AT Command Frame - 0x08
n AT Command - Queue Parameter Value frame - 0x09

This API reference assumes that you are familiar with Bluetooth and GATT services. The specifications
for Bluetooth are an open standard and can be found at the following links:

n Bluetooth Core Specifications: bluetooth.com/specifications/bluetooth-core-specification
n Bluetooth GATT: bluetooth.com/specifications/gatt/generic-attributes-overview

The XBee API BLE Service contains two characteristics: the API Request characteristic and the API
Response characteristic. The UUIDs for the service and its characteristics are listed in the table
below.

Characteristic UUID

API Service UUID 53da53b9-0447-425a-b9ea-9837505eb59a

API Request Characteristic UUID 7dddca00-3e05-4651-9254-44074792c590

API Response Characteristic UUID f9279ee9-2cd0-410c-81cc-adf11e4e5aea

API Request characteristic
UUID: 7dddca00-3e05-4651-9254-44074792c590
Permissions: Writeable
XBee API frames are broken into chunks and transmitted sequentially to the request characteristic
using write operations. Valid frames are then processed and the result is returned through indications
on the response characteristic.

https://www.bluetooth.com/specifications/bluetooth-core-specification
https://www.bluetooth.com/specifications/gatt/generic-attributes-overview

BLE reference API Response characteristic

Digi XBee3® 802.15.4 RF Module User Guide 61

API frames do not need to be written completely in a single write operation to the request
characteristic. In fact, Bluetooth limits the size of a written value to 3 bytes smaller than the
configured Maximum Transmission Unit (MTU), which defaults to 23, meaning that by default, you can
only write 20 bytes at a time.
After connecting you must send a valid Bluetooth Unlock API Frame in order to authenticate the
connection. If the BLE Unlock API - 0x2C frame has not been executed, all other API frames are silently
ignored and are not processed.

API Response characteristic
UUID: f9279ee9-2cd0-410c-81cc-adf11e4e5aea
Permissions: Readable, Indicate
Responses to API requests made to the request characteristic are returned through the response
characteristics. This characteristic cannot be read directly.
Response data is presented through indications on this characteristic. Indications are acknowledged
and re-transmitted at the BLE link layer and application layer and provide a robust transport for this
data.

Configure the XBee3 802.15.4 RF Module

Software libraries 63
Over-the-air (OTA) firmware update 63
Custom defaults 63
Custom configuration: Create a new factory default 64
XBee bootloader 64
Send a firmware image 65
XBee Network Assistant 65
XBee Multi Programmer 66

Digi XBee3® 802.15.4 RF Module User Guide 62

Configure the XBee3 802.15.4 RF Module Software libraries

Digi XBee3® 802.15.4 RF Module User Guide 63

Software libraries
One way to communicate with the XBee3 802.15.4 RF Module is by using a software library. The
libraries available for use with the XBee3 802.15.4 RF Module include:

n XBee Java library
n XBee Python library

The XBee Java Library is a Java API. The package includes the XBee library, its source code and a
collection of samples that help you develop Java applications to communicate with your XBee devices.
The XBee Python Library is a Python API that dramatically reduces the time to market of XBee
projects developed in Python and facilitates the development of these types of applications, making it
an easy process.

Over-the-air (OTA) firmware update
The XBee3 802.15.4 RF Module supports OTA firmware updates using XCTU version 6.3.0 or higher. For
instructions on performing an OTA firmware update with XCTU, see How to update the firmware of
your modules in the XCTU User Guide.
OTA capability is only available whenMM (Mac Mode) = 0 or 3.

Custom defaults
Custom defaults allow you to preserve a subset of the device configuration parameters even after
returning to default settings using RE (Restore Defaults). This can be useful for settings that identify
the device—such as NI (Node Identifier)—or settings that could make remotely recovering the device
difficult if they were reset—such as ID (Extended PAN ID).

Note You must send these commands as local AT commands, they cannot be set using Remote AT
Command Request frame - 0x17.

Set custom defaults
Use %F (Set Custom Default) to set custom defaults. When the XBee3 802.15.4 RF Module receives %F
it takes the next command it receives and applies it to both the current configuration and the custom
defaults.
To set custom defaults for multiple commands, send a %F before each command.

Restore factory defaults
!C (Clear Custom Defaults) clears all custom defaults, so that RE (Restore Defaults) will restore the
device to factory defaults. Alternatively, R1 (Restore Factory Defaults) restores all parameters to
factory defaults without erasing their custom default values.

Limitations
There is a limitation on the number of custom defaults that can be set on a device. The number of
defaults that can be set depends on the size of the saved parameters and the devices' firmware
version. When there is no more room for custom defaults to be saved, any command sent immediately
after a %F returns an error.

http://www.digi.com/resources/documentation/digidocs/90001438/Default.htm
http://xbplib.readthedocs.io/en/latest/
http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_ts_how-to_update_firmware.htm
http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_ts_how-to_update_firmware.htm

Configure the XBee3 802.15.4 RF Module Custom configuration: Create a new factory default

Digi XBee3® 802.15.4 RF Module User Guide 64

Custom configuration: Create a new factory default
You can create a custom configuration that is used as a new factory default. This feature is useful if,
for example, you need to maintain certain settings for manufacturing or want to ensure a feature is
always enabled. When you use RE (Restore Defaults) to perform a factory reset on the device, the
custom configuration is set on the device after applying the original factory default settings.
For example, by default Bluetooth is disabled on devices. You can create a custom configuration in
which Bluetooth is enabled by default. When you use RE to reset the device to the factory defaults, the
Bluetooth configuration set to the custom configuration (enabled) rather than the original factory
default (disabled).
The custom configuration is stored in non-volatile memory. You can continue to create and save
custom configurations until the XBee3 802.15.4 RF Module's memory runs out of space. If there is no
space left to save a configuration, the device returns an error.
You can use !C (Clear Custom Defaults) to clear or overwrite a custom configuration at any time.

Set a custom configuration
1. Open XCTU and load your device.
2. Enter Commandmode.
3. Perform the following process for each configuration that you want to set as a factory default.

a. Send the Set Custom Default command, AT%F. This command enables you to enter
a custom configuration.

b. Send the custom configuration command. For example: ATBT 1. This command sets
the default for Bluetooth to enabled.

Clear all custom configuration on a device
After you have set configurations using %F (Set Custom Default), you can return all configurations to
the original factory defaults.

1. Open XCTU and load the device.
2. Enter Commandmode.
3. Send AT!C.

XBee bootloader
You can update firmware on the XBee3 802.15.4 RF Module serially. This is done by invoking the XBee3
bootloader and transferring the firmware image using XMODEM.
This process is also used for updating a local device's firmware using XCTU.
XBee devices use a modified version of Silicon Labs' Gecko bootloader. This bootloader version
supports a custom entry mechanism that uses module pins DIN, DTR/SLEEP_RQ, and RTS.
To invoke the bootloader using hardware flow control lines, do the following:

1. Set DTR/SLEEP_RQ low (CMOS0V) and RTS high.
2. Send a serial break to the DIN pin and power cycle or reset the module.
3. When the device powers up, set DTR/SLEEP_RQ and DIN to low (CMOS0V) and RTS should be

high.
4. Terminate the serial break and send a carriage return at 115200 baud to the device.

Configure the XBee3 802.15.4 RF Module Send a firmware image

Digi XBee3® 802.15.4 RF Module User Guide 65

5. If successful, the device sends the Silicon Labs' Gecko bootloader menu out the DOUT pin at
115200 baud.

6. You can send commands to the bootloader at 115200 baud.

Note Disable hardware flow control when entering and communicating with the bootloader.

All serial communications with the module use 8 data bits, no parity bit, and 1 stop bit.
You can also invoke the bootloader from the XBee application by sending %P (Invoke Bootloader).

Send a firmware image
After invoking the bootloader, a menu is sent out the UART at 115200 baud. To upload a firmware
image through the UART interface:

1. Look for the bootloader prompt BL > to ensure the bootloader is active.
2. Send an ASCII 1 character to initiate a firmware update.
3. After sending a 1, the device waits for an XModem CRC upload of a .gbl image over the serial

line at 115200 baud. Send the .gbl file to the device using standard XMODEM-CRC.

If the firmware image is successfully loaded, the bootloader outputs a “complete” string. Invoke the
newly loaded firmware by sending a 2 to the device.
If the firmware image is not successfully loaded, the bootloader outputs an "aborted string". It return
to the main bootloader menu. Some causes for failure are:

n Over 1 minute passes after the command to send the firmware image and the first block of the
image has not yet been sent.

n A power cycle or reset event occurs during the firmware load.
n A file error or a flash error occurs during the firmware load.

XBee Network Assistant
The XBee Network Assistant is an application designed to inspect andmanage RF networks created
by Digi XBee devices. Features include:

n Join and inspect any nearby XBee network to get detailed information about all the nodes it
contains.

n Update the configuration of all the nodes of the network, specific groups, or single devices
based on configuration profiles.

n Geo-locate your network devices or place them in custommaps and get information about the
connections between them.

n Export the network you are inspecting and import it later to continue working or work offline.
n Use automatic application updates to keep you up to date with the latest version of the tool.

See the XBee Network Assistant User Guide for more information.
To install the XBee Network Assistant:

1. Navigate to digi.com/xbeenetworkassistant.
2. Click General Diagnostics, Utilities and MIBs.
3. Click the XBee Network Assistant - Windows x86 link.

https://www.digi.com/resources/documentation/digidocs/90002288/Default.htm
https://www.digi.com/support/productdetail?pid=5642

Configure the XBee3 802.15.4 RF Module XBee Multi Programmer

Digi XBee3® 802.15.4 RF Module User Guide 66

4. When the file finishes downloading, run the executable file and follow the steps in the XBee
Network Assistant Setup Wizard.

XBee Multi Programmer
The XBee Multi Programmer is a combination of hardware and software that enables partners and
distributors to program multiple Digi Radio frequency (RF) devices simultaneously. It provides a fast
and easy way to prepare devices for distribution or large networks deployment.
The XBee Multi Programmer board is an enclosed hardware component that allows you to program up
to six RF modules thanks to its six external XBee sockets. The XBee Multi Programmer application
communicates with the boards and allows you to set up and execute programming sessions. Some of
the features include:

n Each XBee Multi Programmer board allows you to program up to six devices simultaneously.
Connect more boards to increase the programming concurrency.

n Different board variants cover all the XBee form factors to program almost any Digi RF device.

Download the XBee Multi Programmer application from: digi.com/support/productdetail?pid=5641
See the XBee Multi Programmer User Guide for more information.

https://www.digi.com/support/productdetail?pid=5641
https://www.digi.com/resources/documentation/digidocs/90002263/default.htm

Modes

Transparent operating mode 68
API operating mode 68
Commandmode 68
Idle mode 71
Transmit mode 71
Receive mode 71

Digi XBee3® 802.15.4 RF Module User Guide 67

Modes Transparent operating mode

Digi XBee3® 802.15.4 RF Module User Guide 68

Transparent operating mode
Devices operate in this mode by default. The device acts as a serial line replacement when it is in
Transparent operating mode. The device queues all UART data it receives through the DIN pin for RF
transmission. When a device receives RF data, it sends the data out through the DOUT pin. You can set
the configuration parameters using Commandmode.
Transparent operating mode is not available when using the SPI interface; see SPI operation.

Serial-to-RF packetization
Data is buffered in the incoming serial buffer until one of the following causes the data to be
packetized and transmitted:

1. No serial characters are received for the amount of time determined by the RO (Packetization
Timeout) parameter. If RO = 0, packetization begins when a character is received.

2. The maximum number of characters that will fit in an RF packet is received. There are a
number of factors that determine payload size. You can query the NP (Maximum Packet
Payload Bytes) to determine the maximum payload size based on current configuration. For
more information, see Maximum payload.

3. The Commandmode Sequence, GT + CC + GT, (including spaces) is received; this is any data in
the serial receive buffer received before the sequence is transmitted. For more information,
see Enter Commandmode.

If the device cannot immediately transmit (for instance, if it is already receiving RF data), the serial
data is stored in the serial receive buffer. The data is packetized and sent at any RO timeout or when
NP bytes are received.
If the serial receive buffer becomes full, hardware flow control must be implemented in order to
prevent overflow (loss of data between the host and device).

API operating mode
Application programming interface (API) operating mode is an alternative to Transparent mode. It is
helpful in managing larger networks and is more appropriate for performing tasks such as collecting
data from multiple locations or controlling multiple devices remotely. API mode is a frame-based
protocol that allows you to direct data on a packet basis. It can be particularly useful in large
networks where you need control over the operation of the radio network or when you need to know
which node a data packet is from. The device communicates UART or SPI data in packets, also known
as API frames. This mode allows for structured communications with serial devices.
For more information, see API mode overview.

Command mode
Commandmode is a state in which the firmware interprets incoming characters as commands. It
allows you to modify the device’s configuration using parameters you can set using AT
commands. When you want to read or set any parameter of the XBee3 802.15.4 RF Module using this
mode, you have to send an AT command. Every AT command starts with the letters AT followed by the
two characters that identify the command and then by some optional configuration values.
The operating modes of the XBee3 802.15.4 RF Module are controlled by the AP (API Enable) setting,
but Commandmode is always available as a mode the device can enter while configured for any of the
operating modes.

Modes Command mode

Digi XBee3® 802.15.4 RF Module User Guide 69

Commandmode is available on the UART interface for all operating modes. You cannot use the SPI
interface to enter Commandmode.

Enter Command mode
To get a device to switch into Commandmode, you must issue the following sequence: +++ within one
second. There must be at least one second preceding and following the +++ sequence. Both the
command character (CC) and the silence before and after the sequence (GT) are configurable. When
the entrance criteria are met the device responds with OK\r on UART signifying that it has entered
Commandmode successfully and is ready to start processing AT commands.
If configured to operate in Transparent operating mode, when entering Commandmode the XBee3
802.15.4 RF Module knows to stop sending data and start accepting commands locally.

Note Do not press Return or Enter after typing +++ because it interrupts the guard time silence and
prevents you from entering Commandmode.

When the device is in Commandmode, it listens for user input and is able to receive AT commands on
the UART. If CT time (default is 10 seconds) passes without any user input, the device drops out of
Commandmode and returns to the previous operating mode. You can force the device to leave
Commandmode by sending CN (Exit Commandmode).
You can customize the command character, the guard times and the timeout in the device’s
configuration settings. For more information, see CC (Command Character), CT (Command Mode
Timeout) and GT (Guard Times).

Troubleshooting
Failure to enter Commandmode is often due to baud rate mismatch. Ensure that the baud rate of the
connection matches the baud rate of the device. By default, BD (Interface Data Rate) = 3 (9600 b/s).
There are two alternative ways to enter Commandmode:

n A serial break for six seconds enters Commandmode. You can issue the "break" command
from a serial console, it is often a button or menu item.

n Asserting DIN (serial break) upon power up or reset enters Commandmode. XCTU guides you
through a reset and automatically issues the break when needed.

Note You must assert RTS for both of these methods, otherwise the device enters the bootloader.

Both of these methods temporarily set the device's baud rate to 9600 and return an OK on the UART
to indicate that Commandmode is active. When Commandmode exits, the device returns to normal
operation at the baud rate that BD is set to.

Send AT commands
Once the device enters Commandmode, use the syntax in the following figure to send AT commands.
Every AT command starts with the letters AT, which stands for "attention." The AT is followed by two
characters that indicate which command is being issued, then by some optional configuration values.
To read a parameter value stored in the device’s register, omit the parameter field.

Modes Command mode

Digi XBee3® 802.15.4 RF Module User Guide 70

The preceding example changes NI (Node Identifier) toMy XBee.

Multiple AT commands
You can sendmultiple AT commands at a time when they are separated by a comma in Command
mode; for example, ATNIMy XBee,AC<cr>.
The preceding example changes the NI (Node Identifier) toMy XBee andmakes the setting active
through AC (Apply Changes).

Parameter format
Refer to the list of AT commands for the format of individual AT command parameters. Valid formats
for hexidecimal values include with or without a leading 0x for example FFFF or 0xFFFF.

Response to AT commands
When using AT commands to set parameters the XBee3 802.15.4 RF Module responds with OK<cr> if
successful and ERROR<cr> if not.

Apply command changes
Any changes you make to the configuration command registers using AT commands do not take effect
until you apply the changes. For example, if you send the BD command to change the baud rate, the
actual baud rate does not change until you apply the changes. To apply changes:

1. Send AC (Apply Changes).
2. SendWR (Write).

or:
3. Exit Commandmode.

Make command changes permanent
Send a WR (Write) command to save the changes.WRwrites parameter values to non-volatile memory
so that parameter modifications persist through subsequent resets.
Send as RE (Restore Defaults) to wipe settings saved using WR back to their factory defaults, or
custom defaults if you have set any.

Note You still have to use WR to save the changes enacted with RE.

Exit Command mode
1. Send CN (Exit Commandmode) followed by a carriage return.

or:

Modes Idle mode

Digi XBee3® 802.15.4 RF Module User Guide 71

2. If the device does not receive any valid AT commands within the time specified by CT
(Command Mode Timeout), it returns to Transparent or API mode. The default Commandmode
timeout is 10 seconds.

For an example of programming the device using AT Commands and descriptions of each configurable
parameter, see AT commands.

Idle mode
When not receiving or transmitting data, the XBee3 802.15.4 RF Module is in Idle mode. During Idle
mode, the device listens for valid data on both the RF and serial ports.
If configured for Sleep support, the XBee3 802.15.4 RF Module only transitions to a low power state
when in Idle mode.

Transmit mode
Transmit mode is the mode in which the device is transmitting data. This typically happens after data
is received from the serial port.

Receive mode
This is the default mode for the XBee3 802.15.4 RF Module. The device is in Receive mode when it is
not transmitting data. If a destination node receives a valid RF packet, the destination node transfers
the data to its serial transmit buffer.

Serial communication

Serial interface 73
Serial receive buffer 73
Serial transmit buffer 73
UART data flow 73
Flow control 74

Digi XBee3® 802.15.4 RF Module User Guide 72

Serial communication Serial interface

Digi XBee3® 802.15.4 RF Module User Guide 73

Serial interface
The XBee3 802.15.4 RF Module interfaces to a host device through a serial port. The device can
communicate through its serial port:

n Through logic and voltage compatible universal asynchronous receiver/transmitter (UART).
n Through a level translator to any serial device, for example through an RS-232 or USB interface

board.
n Through SPI, as described in SPI communications.

Serial receive buffer
When serial data enters the device through the DIN pin or the SPI_MOSI pin, it stores the data in the
serial receive buffer until the device can process it. Under certain conditions, the device may not be
able to process data in the serial receive buffer immediately. If large amounts of serial data are sent
to the device such that the serial receive buffer overflows, then the device discards all incoming data
until it is able to process the data in the buffer. If the UART is in use, you can avoid this by the host side
by honoring clear-to-send (CTS) flow control.

Serial transmit buffer
When the device receives RF data, it moves the data into the serial transmit buffer and sends it out
the UART. If the serial transmit buffer becomes full and the system buffers are also full, then it drops
the entire RF data packet. Whenever the device receives data faster than it can process and transmit
the data out the serial port, there is a potential of dropping data.

UART data flow
Devices that have a UART interface connect directly to the pins of the XBee3 802.15.4 RF Module as
shown in the following figure. The figure shows system data flow in a UART-interfaced environment.
Low-asserted signals have a horizontal line over the signal name.

For more information about hardware specifications for the UART, see the XBee3 Hardware Reference
Manual.

Serial data
A device sends data to the XBee3 802.15.4 RF Module's UART as an asynchronous serial signal. When
the device is not transmitting data, the signals should idle high.

https://www.digi.com/resources/documentation/digidocs/90001543/Default.htm
https://www.digi.com/resources/documentation/digidocs/90001543/Default.htm

Serial communication Flow control

Digi XBee3® 802.15.4 RF Module User Guide 74

For serial communication to occur, you must configure the UART of both devices (the microcontroller
and the XBee3 802.15.4 RF Module) with compatible settings for the baud rate, parity, start bits, stop
bits, and data bits.
Each data byte consists of a start bit (low), 8 data bits (least significant bit first) and a stop bit (high).
The following diagram illustrates the serial bit pattern of data passing through the device. The
diagram shows UART data packet 0x1F (decimal number 31) as transmitted through the device.

You can configure the UART baud rate, parity, and stop bits settings on the device with the BD, NB,
and SB commands respectively. For more information, see UART interface commands.

Flow control
The XBee3 802.15.4 RF Module maintains buffers to collect serial and RF data that it receives. The
serial receive buffer collects incoming serial characters and holds them until the device can process
them. The serial transmit buffer collects the data it receives via the RF link until it transmits that data
out the serial port. The following figure shows the process of device buffers collecting received serial
data.
Use D6 (DIO6/RTS Configuration) and D7 (DIO7/CTS Configuration) to set flow control.

Clear-to-send (CTS) flow control
If you enable CTS flow control (D7 (DIO7/CTS Configuration)), when the serial receive buffer is more
than FT bytes full, the device de-asserts CTS (sets it high) to signal to the host device to stop sending
serial data. The device reasserts CTS after the serial receive buffer has less than FT bytes in it. See FT
command to configure and read this threshold.

Serial communication Flow control

Digi XBee3® 802.15.4 RF Module User Guide 75

RTS flow control
If you set D6 (DIO6/RTS Configuration) to enable RTS flow control, the device does not send data in
the serial transmit buffer out the DOUT pin as long as RTS is de-asserted (set high). Do not de-assert
RTS for long periods of time or the serial transmit buffer will fill. If the device receives an RF data
packet and the serial transmit buffer does not have enough space for all of the data bytes, it discards
the entire RF data packet.
If the device sends data out the UART when RTS is de-asserted (set high) the device could send up to
five characters out the UART port after RTS is de-asserted.
Cases in which the DO buffer may become full, resulting in dropped RF packets:

1. If the RF data rate is set higher than the interface data rate of the device, the device may
receive data faster than it can send the data to the host. Even occasional transmissions from a
large number of devices can quickly accumulate and overflow the transmit buffer.

2. If the host does not allow the device to transmit data out from the serial transmit buffer due to
being held off by hardware flow control.

SPI operation

This section specifies how SPI is implemented on the device, what the SPI signals are, and how full
duplex operations work.

SPI communications 77
Full duplex operation 78
Low power operation 78
Select the SPI port 79
Force UART operation 80

Digi XBee3® 802.15.4 RF Module User Guide 76

SPI operation SPI communications

Digi XBee3® 802.15.4 RF Module User Guide 77

SPI communications
The XBee3 802.15.4 RF Module supports SPI communications in slave mode. Slave mode receives the
clock signal and data from the master and returns data to the master. The following table shows the
signals that the SPI port uses on the device.
Refer to the XBee3 Hardware Reference Guide for the pinout of your device.

Signal Direction Function

SPI_MOSI
(Master Out, Slave In)

Input Inputs serial data from the master

SPI_MISO (Master
In, Slave Out)

Output Outputs serial data to the master

SPI_SCLK
(Serial Clock)

Input Clocks data transfers on MOSI and MISO

SPI_SSEL
(Slave Select)

Input Enables serial communication with the slave

SPI_ATTN (Attention) Output Alerts the master that slave has data queued to send. The XBee3
802.15.4 RF Module asserts this pin as soon as data is available
to send to the SPI master and it remains asserted until the SPI
master has clocked out all available data.

In this mode:

n SPI clock rates up to 5 MHz (burst) are possible.
n Data is most significant bit (MSB) first; bit 7 is the first bit of a byte sent over the interface.
n Frame Format mode 0 is used. This means CPOL= 0 (idle clock is low) and CPHA = 0 (data is

sampled on the clock’s leading edge).
n The SPI port only supports API Mode (AP = 1).

The following diagram shows the frame format mode 0 for SPI communications.

SPI mode is chip to chip communication. We do not supply a SPI communication interface on the XBee
development evaluation boards included in the development kit.

https://www.digi.com/resources/documentation/Digidocs/90001543/

SPI operation Full duplex operation

Digi XBee3® 802.15.4 RF Module User Guide 78

Full duplex operation
When using SPI on the XBee3 802.15.4 RF Module the device uses API operation without escaped
characters to packetize data. The device ignores the configuration of AP because SPI does not
operate in any other mode. SPI is a full duplex protocol, even when data is only available in one
direction. This means that whenever a device receives data, it also transmits, and that data is
normally invalid. Likewise, whenever a device transmits data, invalid data is probably received. To
determine whether or not received data is invalid, the firmware places the data in API packets.
SPI allows for valid data from the slave to begin before, at the same time, or after valid data begins
from the master. When the master sends data to the slave and the slave has valid data to send in the
middle of receiving data from the master, a full duplex operation occurs, where data is valid in both
directions for a period of time. Not only must the master and the slave both be able to keep up with
the full duplex operation, but both sides must honor the protocol.
The following figure illustrates the SPI interface while valid data is being sent in both directions.

Low power operation
Sleepmodes generally work the same on SPI as they do on UART. However, due to the addition of SPI
mode, there is an option of another sleep pin, as described below.
By default, Digi configures DIO8 (SLEEP_REQUEST) as a peripheral and during pin sleep it wakes the
device and puts it to sleep. This applies to both the UART and SPI serial interfaces.
If SLEEP_REQUEST is not configured as a peripheral and SPI_SSEL is configured as a peripheral, then
pin sleep is controlled by SPI_SSEL rather than by SLEEP_REQUEST. Asserting SPI_SSEL by driving it
low either wakes the device or keeps it awake. Negating SPI_SSEL by driving it high puts the device to
sleep.
Using SPI_SSEL to control sleep and to indicate that the SPI master has selected a particular slave
device has the advantage of requiring one less physical pin connection to implement pin sleep on SPI.
It has the disadvantage of putting the device to sleep whenever the SPI master negates SPI_SSEL
(meaning time is lost waiting for the device to wake), even if that was not the intent.
If the user has full control of SPI_SSEL so that it can control pin sleep, whether or not data needs to be
transmitted, then sharing the pin may be a good option in order to make the SLEEP_REQUEST pin
available for another purpose. Without control of SPI_SSEL while using it for sleep request, the device
may go to sleep at inopportune times.
If the device is one of multiple slaves on the SPI, then the device sleeps while the SPI master talks to
the other slave, but this is acceptable in most cases.
If you do not configure either pin as a peripheral, then the device stays awake, being unable to sleep in
SM1 mode.

SPI operation Select the SPI port

Digi XBee3® 802.15.4 RF Module User Guide 79

Select the SPI port
To force SPI mode on through-hole devices, hold DOUT/DIO13 low while resetting the device until SPI_
ATTN asserts. This causes the device to disable the UART and go straight into SPI communication
mode. Once configuration is complete, the device queues a modem status frame to the SPI port,
which causes the SPI_ATTN line to assert. The host can use this to determine that the SPI port is
configured properly.
On surface-mount devices, forcing DOUT low at the time of reset has no effect. To use SPI mode on
the SMT modules, assert the SPI_SSEL low after reset and before any UART data is input.
Forcing DOUT low on TH devices forces the device to enable SPI support by setting the following
configuration values:

Through-hole Micro and Surface-mount SPI signal

D1 (DIO1/ADC1/TH_SPI_ATTN Configuration) P9 (DIO19/SPI_ATTN Configuration) ATTN

D2 (DIO2/ADC2/TH_SPI_CLK Configuration) P8 (DIO18/SPI_CLK Configuration) SCLK

D3 (DIO3/ADC3/TH_SPI_SSEL Configuration) P7 (DIO17/SPI_SSEL Configuration) SSEL

D4 (DIO4/TH_SPI_MOSI Configuration) P6 (DIO16/SPI_MOSI Configuration) MOSI

P2 (DIO12/TH_SPI_MISO Configuration) P5 (DIO15/SPI_MISO Configuration) MISO

Note The ATTN signal is optional—you can still use SPI mode if you disable the SPI_ATTN pin (D1 on
through-hole or P9 on surface-mount devices).

As long as the host does not issue a WR command, these configuration values revert to previous
values after a power-on reset. If the host issues a WR command while in SPI mode, these same
parameters are written to flash, and after a reset the device continues to operate in SPI mode.
If the UART is disabled and the SPI is enabled in the written configuration, then the device comes up in
SPI mode without forcing it by holding DOUT low. If both the UART and the SPI are configured (P3
(DIO13/UART_DOUT Configuration) through P9 (DIO19/SPI_ATTN Configuration) are set to 1) at the
time of reset, then output goes to the UART until the host sends the first input to the SPI interface. As
soon as the first input comes on the SPI port, then all subsequent output goes to the SPI port and the
UART is disabled.
Once you select a serial port (UART or SPI), all subsequent output goes to that port, even if you apply a
new configuration. Once the SPI interface is made active, the only way to switch the selected serial
port back to UART is to reset the device.
When the master asserts the slave select (SPI_SSEL) signal, SPI transmit data is driven to the output
pin SPI_MISO, and SPI data is received from the input pin SPI_MOSI. The SPI_SSEL pin has to be
asserted to enable the transmit serializer to drive data to the output signal SPI_MISO. A rising edge
on SPI_SSEL causes the SPI_MISO line to be tri-stated such that another slave device can drive it, if so
desired.
If the output buffer is empty, the SPI serializer transmits the last valid bit repeatedly, which may be
either high or low. Otherwise, the device formats all output in API mode 1 format, as described in
Operate in API mode. The attached host is expected to ignore all data that is not part of a formatted
API frame.

SPI operation Force UART operation

Digi XBee3® 802.15.4 RF Module User Guide 80

Force UART operation
If you configure a device with only the SPI enabled and no SPI master is available to access the SPI
slave port, you can recover the device to UART operation by holding DIN / CONFIG low at reset time.
DIN/CONFIG forces a default configuration on the UART at 9600 baud and brings up the device in
Commandmode on the UART port. You can then send the appropriate commands to the device to
configure it for UART operation. If you write those parameters, the device comes up with the UART
enabled on the next reset.

I/O support

The following topics describe analog and digital I/O line support, line passing and output control.

Legacy support 82
Mixed network considerations 83
Digital I/O support 83
Analog I/O support 84
Monitor I/O lines 85
I/O sample data format 86
API frame support 88
On-demand sampling 89
Periodic I/O sampling 91
Digital I/O change detection 93
I/O line passing 94
Digital line passing 94
Output sample data 96
Output control 96
I/O behavior during sleep 96

Digi XBee3® 802.15.4 RF Module User Guide 81

I/O support Legacy support

Digi XBee3® 802.15.4 RF Module User Guide 82

Legacy support
By default, the XBee3 802.15.4 RF Module is configured to operate in a legacy configuration. This
provides network and application compatibility with XBee S1 802.15.4 and XBee S2C
802.15.4 devices. Use AO (API Output Options) to determine which outgoing API frames are emitted
and what I/O lines are used for sampling.
On the source node, AO affects:

n Which Digital I/O lines are sampled
n What sample frame type is used for outgoing transmissions

On the destination node, AO affects:

n How incoming XBee3 sample frames are interpreted and what API frames are emitted

Previous 802.15.4 firmwares on the XBee S1 and XBee S2C hardware had a limited set of I/O lines
available. Valid DIO lines on these devices are from D0 through D8; I/O samples are transmitted over
the air using a standard I/O sample packet Legacy data format. These platforms do not have
an AO command and always output sample data in a legacy format if possible.
For the XBee3 platform, digital I/O has been enhanced to be in parity with DigiMesh and Zigbee. You
can now enable up to fourteen digital inputs for sampling: D0 through P4 as long as AO is not set to 2.
In order to support these additional I/O lines, an enhanced I/O sample packet is sent over the air,
which is not compatible with the S1 or S2C.
By default, the XBee3 802.15.4 RF Module is configured to operate in a legacy configuration
with AO set to 2. This allows you to sample D0 through D8. If you configure D9 through P4 as digital
I/O, they are not sampled unless you set AO to 0 or 1.
For new designs, we recommend setting AO to 0 or 1 (Operate in API mode), which allows you to use
additional I/O lines for sampling and easily allows you to switch to Zigbee or DigiMesh, as the API and
I/O functionality are identical.
This table illustrates the various configuration combinations that are possible and the expected
output:

Source

Source
AO
value Destination

Destination
AO value

Data
format API frame on receiver

XBee3 0 or 1 XBee3 0 or 1 Enhanced I/O Data Sample Rx Indicator frame -
0x92

XBee3 0 or 1 XBee3 2 Legacy RX (Receive) Packet: 64-bit address IO
frame - 0x82 / RX Packet: 16-bit address
I/O frame - 0x83

XBee3 0 or 1 S1 or S2C N/A N/A N/A

XBee3 2 XBee3 0 or 1 Legacy RX (Receive) Packet: 64-bit address IO
frame - 0x82 / RX Packet: 16-bit address
I/O frame - 0x83

XBee3 2 S1 or S2C N/A Legacy RX (Receive) Packet: 64-bit address IO
frame - 0x82 / RX Packet: 16-bit address
I/O frame - 0x83

https://www.digi.com/support/productdetail?pid=3257
https://www.digi.com/products/xbee-rf-solutions/2-4-ghz-modules/xbee-802-15-4
https://www.digi.com/products/xbee-rf-solutions/2-4-ghz-modules/xbee-802-15-4

I/O support Mixed network considerations

Digi XBee3® 802.15.4 RF Module User Guide 83

Source

Source
AO
value Destination

Destination
AO value

Data
format API frame on receiver

S1 or
S2C

N/A XBee3 0 or 1 Legacy RX (Receive) Packet: 64-bit address IO
frame - 0x82 / RX Packet: 16-bit address
I/O frame - 0x83

S1 or
S2C

N/A XBee3 2 Legacy RX (Receive) Packet: 64-bit address IO
frame - 0x82 / RX Packet: 16-bit address
I/O frame - 0x83

Refer to I/O sample data format for more information on the format of the incoming I/O sample data.

Mixed network considerations
If you use a mixed network of XBee3 and legacy S1 or S2C devices, you must set AO to 2 in order to
transmit sample data that is compatible with these devices.
Regardless of the AO setting, if an XBee3 802.15.4 RF Module receives an I/O sample packet from an
S1 or S2C device, it always outputs the legacy data format.

Digital I/O support
AO (API Output Options) determines the I/O lines available for sampling. By default, AO is configured
to be compatible with legacy devices.

n Configure AO to 0 or 1 to make digital I/O available on lines DIO0 through DIO14 (D0
(DIO0/ADC0/Commissioning Configuration) - D9 (DIO9/ON_SLEEP Configuration) and P0
(DIO10/RSSI/PWM0 Configuration) - P4 (DIO14/UART_DIN Configuration)).

n Configure AO to 2 to make digital I/O available on lines DIO0 through DIO8 (D0 - D8
(DIO8/DTR/SLP_Request Configuration)). This provides compatibility with S1 and S2C devices
and is the default configuration.

See Legacy support for more information.
Digital sampling is enabled on these pins if configured as 3, 4, or 5 with the following meanings:

n 3 is digital input.
l Use PR (Pull-up/Down Resistor Enable) to enable internal pull up/down resistors for each

digital input. Use PD (Pull Up/Down Direction) to determine the direction of the internal pull
up/down resistor. All disabled and digital input pins are pulled up by default.

n 4 is digital output low.
n 5 is digital output high.

Function
when AO = 0
or 1

Legacy
Function
when AO = 2

Micro
Pin

SMT
Pin

TH
Pin AT Command

DIO0 DIO0 31 33 20 D0 (DIO0/ADC0/Commissioning
Configuration)

I/O support Analog I/O support

Digi XBee3® 802.15.4 RF Module User Guide 84

Function
when AO = 0
or 1

Legacy
Function
when AO = 2

Micro
Pin

SMT
Pin

TH
Pin AT Command

DIO1 DIO1 30 32 19 D1 (DIO1/ADC1/TH_SPI_ATTN
Configuration)

DIO2 DIO2 29 31 18 D2 (DIO2/ADC2/TH_SPI_CLK
Configuration)

DIO3 DIO3 28 30 17 D3 (DIO3/ADC3/TH_SPI_SSEL
Configuration)

DIO4 DIO4 23 24 11 D4 (DIO4/TH_SPI_MOSI Configuration)

DIO5 DIO5 26 28 15 D5 (DIO5/Associate Configuration)

DIO6 DIO6 27 29 16 D6 (DIO6/RTS Configuration)

DIO7 DIO7 24 25 12 D7 (DIO7/CTS Configuration)

DIO8 DIO8 9 10 9 D8 (DIO8/DTR/SLP_Request
Configuration)

DIO9 N/A 25 26 13 D9 (DIO9/ON_SLEEP Configuration)

DIO10 N/A 7 7 6 P0 (DIO10/RSSI/PWM0 Configuration)

DIO11 N/A 8 8 7 P1 (DIO11/PWM1 Configuration)

DIO12 N/A 5 5 4 P2 (DIO12/TH_SPI_MISO
Configuration)

DIO13 N/A 3 3 2 P3 (DIO13/UART_DOUT Configuration)

DIO14 N/A 4 4 3 P4 (DIO14/UART_DIN Configuration)

I\O sampling is not available for pins P5 through P9. See the XBee3 Hardware Reference Manual for full
pinouts and functionality.

Analog I/O support
Analog input is available on D0 through D3. Configure these pins to 2 (ADC) to enable analog sampling.
PWM output is available on P0 and P1, which can be used for Analog line passing. Use M0 (PWM0 Duty
Cycle) and M1 (PWM1 Duty Cycle) to set a fixed PWM level.

Function Micro Pin SMT Pin TH Pin AT Command

ADC0 31 33 20 D0 (DIO0/ADC0/Commissioning Configuration)

ADC1 30 32 19 D1 (DIO1/ADC1/TH_SPI_ATTN Configuration)

ADC2 29 31 18 D2 (DIO2/ADC2/TH_SPI_CLK Configuration)

ADC3 28 30 17 D3 (DIO3/ADC3/TH_SPI_SSEL Configuration)

https://www.digi.com/resources/documentation/digidocs/90001543/Default.htm

I/O support Monitor I/O lines

Digi XBee3® 802.15.4 RF Module User Guide 85

Function Micro Pin SMT Pin TH Pin AT Command

PWM0 7 7 6 P0 (DIO10/RSSI/PWM0 Configuration)

PWM1 8 8 7 P1 (DIO11/PWM1 Configuration)

AV (Analog Voltage Reference) specifies the analog reference voltage used for the 10-bit ADCs. Analog
sample data is represented as a 2-byte value. For a 10-bit ADC, the acceptable range is from 0x0000
to 0x03FF. To convert this value to a useful voltage level, apply the following formula:

ADC / 1023 (vREF) = Voltage

Note ADCs sampled through MicroPython will have 12-bit resolution.

Example
An ADC value received is 0x01AE; to convert this into a voltage the hexadecimal value is first converted
to decimal (0x01AE = 430). Using the default AV reference of 1.25 V, apply the formula as follows:

430 / 1023 (1.25 V) = 525 mV

Monitor I/O lines
You can monitor pins you configure as digital input, digital output, or analog input and generate I/O
sample data. If you do not define inputs or outputs, no sample data is generated.
Typically, I/O samples are generated by configuring the device to sample I/O pins periodically (based
on a timer) or when a change is detected on one or more digital pins. These samples are always sent
over the air to the destination address specified with DH (Destination Address High) and DL
(Destination Address Low).
You can also gather sample data using on-demand sampling, which allows you to interrogate the state
of the device's I/O pins by issuing an AT command. You can do this on either a local or remote
device via an AT command request.
The three methods to generate sample data are:

n Periodic sample (IR (Sample Rate))
l Periodic sampling based on a timer
l Samples are taken immediately upon wake (excluding pin sleep)
l Sample data is sent to DH+DL destination address
l Can be used with line passing
l Requires API mode on receiver

n Change detect (IC (DIO Change Detect))
l Samples are generated when the state of specified digital input pin(s) change
l Sample data is sent to DH+DL destination address
l Can be used with line passing
l Requires API mode on receiver

I/O support I/O sample data format

Digi XBee3® 802.15.4 RF Module User Guide 86

n On-demand sample (IS (I/O Sample))
l Immediately query the device’s I/O lines
l Can be issued locally in Command Mode
l Can be issued locally or remotely in API mode

These methods are not mutually exclusive and you can use them in combination with each other.

I/O sample data format
AO determines the format of the incoming and outgoing sample data.
By default, AO is configured to be compatible with legacy devices and outputs a legacy data format
regardless of where the sample packet came from.

Legacy data format
Regardless of how I/O data is generated, the format of the sample data is always represented as a
series of bytes in the following format which is compatible with the S1 802.15.4 and S2C 802.15.4
devices:

Bytes Name Description

1 Sample
sets

Number of sample sets. This is determined by IT (Samples before TX) on the
source node.

2 Digital
and
analog
channel
mask

Indicates which digital I/O and ADC lines have sampling enabled. Each bit
corresponds to one digital I/O or ADC line on the device.
bit 0 = DIO0
bit 1 = DIO1
bit 2 = DIO2
bit 3 = DIO3
bit 4 = DIO4
bit 5 = DIO5
bit 6 = DIO6
bit 7 = DIO7
bit 8 = DIO8
bit 9 = ADC0
bit 10 = ADC1
bit 11 = ADC2
bit 12 = ADC3
bit 13 = Reserved
bit 14 = Reserved
bit 15 = Reserved
Example: a channel mask of 0x063C means ADC0, ADC1, DIO2, DIO3, and DIO5
are configured as digital inputs or outputs.

I/O support I/O sample data format

Digi XBee3® 802.15.4 RF Module User Guide 87

Bytes Name Description

2 Digital
data set

Each bit in the digital data set corresponds to a digital bit in the channel mask
and indicates the state of the digital pin, whether high (1) or low (0).
If the digital portion of the channel mask is 0, then these two bytes are omitted
as no digital I/O lines are enabled.
bit 0 = DIO0
bit 1 = DIO1
bit 2 = DIO2
bit 3 = DIO3
bit 4 = DIO4
bit 5 = DIO5
bit 6 = DIO6
bit 7 = DIO7
bit 8 = DIO8
bit 9 = N/A
bit 10 = N/A
bit 11 = N/A
bit 12 = N/A
bit 13 = N/A
bit 14 = N/A
bit 15 = N/A

2 Analog
data set
(multiple)

Each enabled ADC line in the analog portion of the channel mask has a separate
2-byte value based on the number of ADC inputs on the originating device. The
data starts with AD0 and continues sequentially for each enabled analog input
channel up to AD3.
If the analog portion of the channel mask is 0, then no analog sample bytes are
included.

Enhanced data format
If you set AO to 0 or 1 on both the source and destination node, then the data format is represented
as a series of bytes in the following format which matches the DigiMesh and Zigbee firmwares:

Bytes Name Description

1 Sample
sets

Number of sample sets. There is always one sample set per frame.

I/O support API frame support

Digi XBee3® 802.15.4 RF Module User Guide 88

Bytes Name Description

2 Digital
channel
mask

Indicates which digital I/O lines have sampling enabled. Each bit corresponds to
one digital I/O line on the device.
bit 0 = DIO0
bit 1 = DIO1
bit 2 = DIO2
bit 3 = DIO3
bit 4 = DIO4
bit 5 = DIO5
bit 6 = DIO6
bit 7 = DIO7
bit 8 = DIO8
bit 9 = DIO9
bit 10 = DIO10
bit 11 = DIO11
bit 12 = DIO12
bit 13 = DIO13
bit 14 = DIO14
bit 15 = N/A
Example: a digital channel mask of 0x002F means DIO0, 1, 2, 3 and 5 are
configured as digital inputs or outputs.

1 Analog
channel
mask

Indicates which lines have analog inputs enabled for sampling. Each bit in the
analog channel mask corresponds to one analog input channel. If a bit is set,
then a corresponding 2-byte analog data set is included.
bit 0 = AD0/DIO0
bit 1 = AD1/DIO1
bit 2 = AD2/DIO2
bit 3 = AD3/DIO3

2 Digital
data set

Each bit in the digital data set corresponds to a bit in the digital channel mask
and indicates the digital state of the pin, whether high (1) or low (0).
If the digital channel mask is 0x0000, then these two bytes are omitted as no
digital I/O lines are enabled.

2 Analog
data set
(multiple)

Each enabled ADC line in the analog channel mask will have a separate 2-byte
value based on the number of ADC inputs on the originating device. The data
starts with AD0 and continues sequentially for each enabled analog input
channel up to AD3.
If the analog channel mask is 0x00, then no analog sample bytes is included.

API frame support
I/O samples generated using Periodic I/O sampling (IR) and Digital I/O change detection (IC) are
transmitted to the destination address specified by DH and DL. In order to display the sample data,
the receiver must be operating in API mode (AP = 1 or 2). The sample data is represented as an I/O
sample API frame.
There are three types of I/O sample frames that are supported by the XBee3 802.15.4 RF Module:

n 0x92 - Enhanced I/O sample frame
n 0x82 - Legacy 64-bit I/O sample frame
n 0x83 - Legacy 16-bit I/O sample frame

I/O support On-demand sampling

Digi XBee3® 802.15.4 RF Module User Guide 89

If AO = 0 or 1 on both the source and destination node, then a 0x92 frame is generated on the
destination.
See I/O Data Sample Rx Indicator frame - 0x92 for more information on the frame's format and an
example.
For all other cases, the destination node generates either a 0x82 or 0x83 frame depending on
whether the source node is operating in a 16-bit or 64-bit configuration. See Addressing modes for
more information.
See Legacy support for more information on what configuration options generate the various I/O
frames.

On-demand sampling
You can use IS (I/O Sample) to query the current state of all digital I/O and ADC lines on the device and
return the sample data as an AT command response. If no inputs or outputs are defined, the
command returns an ERROR.
On-demand sampling can be useful when performing initial deployment, as you can send IS locally to
verify that the device and connected sensors are correctly configured. The format of the sample data
matches what is periodically sent using other sampling methods. You can also send IS remotely using
a remote AT command. When sent remotely from a gateway or server to each sensor node on the
network, on-demand sampling can improve battery life and network performance as the remote node
transmits sample data only when requested instead of continuously.
If you send IS using Commandmode, then the device returns a carriage return delimited list
containing the I/O sample data. If IS is sent either locally or remotely via an API frame, the I/O sample
data is presented as the parameter value in the AT command response frame (AT Command
Response frame - 0x88 or Remote Command Response frame - 0x97).

Example: Command mode
An IS command sent in Commandmode returns the following sample data:
This example uses the enhanced I/O data format, if you use the legacy format (AO = 2 or data is
received from an S1 or S2C device) then refer to the Legacy data format for information on how this
data is structured.

Output Description

01 One sample set

0C0C Digital channel mask, indicates which digital lines are sampled
(0x0C0C = 0000 1100 0000 1100b = DIO2, 3, 10, 11)

03 Analog channel mask, indicates which analog lines are sampled
(0x03 = 0000 0011b = AD0, 1)

0408 Digital sample data that corresponds with the digital channel mask
0x0408 = 0000 0100 0000 1000b = DIO3 and DIO10 are high, DIO2 and DIO11 are low

03D0 Analog sample data for AD0

0124 Analog sample data for AD1

I/O support On-demand sampling

Digi XBee3® 802.15.4 RF Module User Guide 90

Example: Local AT command in API mode
The IS command sent to a local device in API mode would use a AT Command Frame - 0x08 or AT
Command - Queue Parameter Value frame - 0x09 frame:

7E 00 04 08 53 49 53 08
The device responds with a AT Command Response frame - 0x88 that contains the sample data:

7E 00 0F 88 53 49 53 00 01 0C 0C 03 04 08 03 D0 01 24 68
This example uses the enhanced I/O data format, if you use the legacy format (AO = 2 or data is
received from an S1 or S2C device) then see the Legacy data format for information on how this data
is structured.

Output Field Description

7E Start
Delimiter

Indicates the beginning of an API frame

00 0F Length Length of the packet

88 Frame type AT Command response frame

53 Frame ID This ID corresponds to the Frame ID of the 0x08 request

49 53 AT Command Indicates the AT command that this response corresponds to
0x49 0x53 = IS

00 Status Indicates success or failure of the AT command
00 = OK
if no I/O lines are enabled, this will return 01 (ERROR)

01

I/O sample
data

One sample set

0C 0C Digital channel mask, indicates which digital lines are sampled
(0x0C0C = 0000 1100 0000 1100b = DIO2, 3, 10, 11)

03 Analog channel mask, indicates which analog lines are sampled
(0x03 = 0000 0011b = AD0, 1)

04 08 Digital sample data that corresponds with the digital channel mask
0x0408 = 0000 0100 0000 1000b = DIO3 and DIO10 are high, DIO2 and
DIO11 are low

03 D0 Analog sample data for AD0

01 24 Analog sample data for AD1

68 Checksum Can safely be discarded on received frames

Example: Remote AT command in API mode
The IS command sent to a remote device with an address of 0013A200 12345678 uses a Remote AT
Command Request frame - 0x17:

7E 00 0F 17 87 00 13 A2 00 12 34 56 78 FF FE 00 49 53 FF
The sample data from the device is returned in a Remote Command Response frame - 0x97 frame
with the sample data as the parameter value:

7E 00 19 97 87 00 13 A2 00 12 34 56 78 00 00 49 53 00 01 0C 0C 03 04 08 03 FF 03 FF 50

I/O support Periodic I/O sampling

Digi XBee3® 802.15.4 RF Module User Guide 91

This example uses the enhanced I/O data format, if you use the legacy format (AO = 2 or data is
received from an S1 or S2C device) then see Legacy data format for information on how this data is
structured.

Output Field Description

7E Start
Delimiter

Indicates the beginning of an API frame

00 19 Length Length of the packet

97 Frame type Remote AT Command response frame

87 Frame ID This ID corresponds to the Frame ID of the 0x17 request

0013A200
12345678

64-bit
source

The 64-bit address of the node that responded to the request

0000 16-bit
source

The 16-bit address of the node that responded to the request

49 53 AT
Command

Indicates the AT command that this response corresponds to
0x49 0x53 = IS

00 Status Indicates success or failure of the AT command
00 = OK
if no I/O lines are enabled, this will return 01 (ERROR)

01

I/O sample
data

One sample set

0C 0C Digital channel mask, indicates which digital lines are sampled
(0x0C0C = 0000 1100 0000 1100b = DIO2, 3, 10, 11)

03 Analog channel mask, indicates which analog lines are sampled
(0x03 = 0000 0011b = AD0, 1)

04 08 Digital sample data that corresponds with the digital channel mask
0x0408 = 0000 0100 0000 1000b = DIO3 and DIO10 are high, DIO2
and DIO11 are low

03 D0 Analog sample data for AD0

01 24 Analog sample data for AD1

50 Checksum Can safely be discarded on received frames

Periodic I/O sampling
Periodic sampling allows a device to take an I/O sample and transmit it to a remote device at a
periodic rate.

Source
Use IR (Sample Rate) to set the periodic sample rate for enabled I/O lines.

I/O support Periodic I/O sampling

Digi XBee3® 802.15.4 RF Module User Guide 92

n To disable periodic sampling, set IR to 0.
n For all other IR values, the device samples data when IR milliseconds elapse and transmits the

sampled data to the destination address.

The DH (Destination Address High) and DL (Destination Address Low) commands determine the
destination address of the I/O samples. You must configure at least one pin as a digital I/O or ADC
input on the sending node to generate sample data.

Destination
If the receiving device is operating in API operating mode the I/O data sample is emitted out of the
serial port. Devices that are in Transparent operating mode discard the I/O data samples they receive
unless you enable line passing.

I/O sampling upon wake
By default, a device that is configured for sleep (SM > 0) that has at least one digital I/O or ADC
enabled transmits an I/O sample upon wake regardless of how IR is configured. Sampling upon wake
can be disabled by clearing bit 1 of the SO. For more information about setting sleepmodes, see Sleep
modes and SO (Sleep Options).

Multiple samples per packet
IT (Samples before TX) specifies how many I/O samples can be transmitted in a single OTA packet. Any
single-byte value (0 - 0xFF) is accepted for input. However, the value is adjusted downward based on
how many I/O samples can fit into a maximum size packet; see Maximum payload. A query of IT after
changes are applied tells how many I/O samples will actually be gathered.
Since MM (MAC Mode) must be 0 or 3 to send I/O samples, the maximum payload in the best of
conditions (short source address, short destination address, and no encryption) is 114 bytes. Seven of
those bytes are used by the command header and the I/O header, leaving 107 bytes for I/O samples.
The minimum I/O sample is 2 bytes. Therefore the maximum possible usable value for IT is 53 (or
0x35).
Only legacy I/O frames allow for gathering multiple samples. If you set AO to 0 or 1, then IT is not
applicable and only one sample can be gathered per frame.

Example: Remote AT command in API mode
A device is configured with the following settings:

n D0 and D1 are set to ADC (2)
n D3 is configured as a digital input (3)
n AO is set to 2, so legacy frames are generated
n IT is configured to 3, so that three samples are gathered per transmission

On the destination node, the following frame is emitted:
7E 00 1A 83 12 34 26 02 03 06 04 00 04 01 28 03 12 00 00 01 58 02 FE 00 04 01 2A 03 A0 94

https://www.digi.com/resources/documentation/Digidocs/90001500/Reference/r_max_payload.htm

I/O support Digital I/O change detection

Digi XBee3® 802.15.4 RF Module User Guide 93

Output Field Description

7E Start
Delimiter

Indicates the beginning of an API frame

00 1A Length Length of the packet

83 Frame
type

Legacy 16-bit I/O Sample

12 34 16-bit
Source
Address

The source address of the device that sent the I/O sample

26 RSSI The 64-bit address of the node that responded to the request

02

03 Sample
sets

The number of samples that are included in this frame

06 04 Channel
mask

Mask which indicates which digital and analog lines are enabled. Even though
multiple samples are being gathered, there will only ever be one channel
mask per frame.
(0x0604 = 0000 0110 0000 0100b = ADC0, ADC1, DIO3)

00 04 Sample
set 1

The first set of digital sample data that corresponds with the digital portion of
the channel mask
0x0004 = 0000 0000 0000 0100b = DIO3 is high

01 28 Analog sample data for AD0

03 12 Analog sample data for AD1

00 00 Sample
set 2

The second set of digital sample data
0x0004 = 0000 0000 0000 0000b = DIO3 is low

01 58 Second set of analog sample data for AD0

02 FE Second set of analog sample data for AD1

00 04 Sample
set 1

The third set of digital sample data
0x0004 = 0000 0000 0000 0100b = DIO3 is high

01 2A Third set of analog sample data for AD0

03 A0 Third set of analog sample data for AD1

94 Checksum Can safely be discarded on received frames

Digital I/O change detection
You can configure devices to transmit a data sample immediately whenever a monitored digital I/O
pin changes state. IC (DIO Change Detect) is a bitmask that determines which digital I/O lines to
monitor for a state change. If you set one or more bits in IC, the device transmits an I/O sample as
soon it observes a state change on the monitored digital I/O line(s) using edge detection.
Change detection is only applicable to digital I/O pins that are configured as digital input (3) or digital
output (4 or 5).

I/O support I/O line passing

Digi XBee3® 802.15.4 RF Module User Guide 94

The figure below shows how I/O change detection can work in combination with Periodic I/O
sampling to improve sampling accuracy. In the figure, the gray dashed lines with a dot on top
represent samples taken from the monitored DIO line. The top graph shows only periodic IR samples,
the bottom graph shows a combination of IR periodic samples and IC detected changes. In the top
graph, the humps indicate that the sample was not taken at that exact moment and needed to wait
for the next IR sample period.

Note Use caution when combining change detect sampling with sleepmodes. IC only causes a sample
to be generated if a state change occurs during a wake period. If the device is sleeping when the
digital transition occurs, then no change is detected and an I/O sample is not generated.
Use periodic sampling with IR in conjunction with IC in this instance, since IR generates an I/O sample
upon wakeup and ensures that the change is properly observed.

If you enable multiple samples by setting IT > 1, any change detect that occurs causes all collected
periodic samples to be sent immediately, then a separate IC sample is sent.

I/O line passing
Line passing allows you to affect the output pins of one device by sampling the I/O pins of another. To
support line passing, you must configure a device to generate I/O sample data using periodic sampling
(IR (Sample Rate)) and/or change detection (IC (DIO Change Detect)).
On the device that receives I/O samples, enable line passing setting IA (I/O Input Address) with the
address of the device that has the appropriate inputs enabled. This effectively binds the outputs to a
particular device’s input. This does not affect the ability of the device to receive I/O line data from
other devices—only its ability to update enabled outputs. Set IA to 0xFFFF (broadcast address) to
affect the output using input data from any device on the network.

Digital line passing
Digital I/O lines are mapped in pairs; pins configured as digital input on the transmitting device affect
the corresponding digital output pin on the receiving device. For example, a device that samples D5 as
an input (3) only affects D5 on the receiver if D5 is configured as an output (4 or 5).
Each digital pin has an associated timeout value. When an I/O sample is received that affects a digital
output pin, the pin returns to its configured state after the timeout period expires. For
pins D0 through D9, the associated timeout commands are T0 (D0 Timeout Timer) through T9 (D9
Output Timer). For pins P0 through P4, the associated timeout commands are Q0 (P0 Output
Timer) through Q2.

I/O support Digital line passing

Digi XBee3® 802.15.4 RF Module User Guide 95

Digital line passing is only available on pins D0 through P3. You cannot use UART and SPI pins for line
passing.

Example: Digital line passing
A sampling XBee3 802.15.4 RF Module is configured with the following settings:

AT command Parameter value

D2 (DIO2/ADC2/TH_SPI_CLK Configuration) 3 (digital input)

IR (Sample Rate) 0x7D0 (2 seconds)

DH (Destination Address High) 0013A200

DL (Destination Address Low) 12345678

Every two seconds, an I/O sample is generated and sent to the address specified by DH and DL. The
receiver is configured with the following settings:

AT command Parameter value

D2 (DIO2/ADC2/TH_SPI_CLK Configuration) 5 (digital output low)

T2 (D2 Output Timeout Timer) 0x64 (10 seconds)

IA (I/O Input Address) 0013A20087654321

When this device receives an incoming I/O sample, if the source address matches the one set by IA,
the device sets the output of D2 to match the input of D2 of the receiver. This output level holds for
ten seconds before the pin returns to a digital output low state.

Analog line passing
Similar to digital line passing, analog line passing pairs the Analog I/O support of one device to a PWM
output of another. There are two PWM output pins that can simulate the voltage measured by the
ADC inputs. Be aware that ADC inputs are on different pins than the corresponding PWM outputs: AD0
corresponds to PWM0, and AD1 corresponds to PWM1. See Analog I/O support for the pinouts.
You can set the analog line passing timeout value with PT (PWM Output Timeout), which affects both
PWM output pins. You can explicitly set a PWM output level using the M0 (PWM0 Duty Cycle) and M1
(PWM1 Duty Cycle) commands, when an I/O sample is received that affects a PWM output pin, it
returns to its configured state after the PT timeout period expires.

Example: Analog line passing
A sampling device is configured with the following settings:

AT command Parameter value

DO command 2 (ADC input)

I/O support Output sample data

Digi XBee3® 802.15.4 RF Module User Guide 96

AT command Parameter value

IR (Sample Rate) 0x7D0 (2 seconds)

DH (Destination Address High) 0013A200

DL (Destination Address Low) 12345678

Every two seconds, an I/O sample frame is generated and sent to the address specified by DH and DL.
The receiver is configured with the following settings:

AT command Parameter value

P0 2 (PWM output)

M0 0

PT 0x12C (30 seconds)

IA 0013A20087654321

When this device receives an incoming I/O sample, if the source address matches the one set by IA,
the device sets the PWM output of P0 to match the ADC input of D0 of the receiver. This output level
holds for thirty seconds before the pin returns to a digital output low state.

Output sample data
If a device receives an I/O sample whose address matches that set by IA (I/O Input Address), it
triggers line passing. Line passing operates whether the receiving device is operating in API or
Transparent mode.
By default, if the receiver is configured for API mode, it outputs the I/O sample frame in addition to
affecting output pins. You can suppress the I/O sample frame output by setting IU (I/O Output
Enable) to 0. This only suppresses I/O samples that trigger line passing, a sample generated from a
device whose address does not match the IA address is sent regardless of IU.

Output control
IO (Digital Output Level) controls the output levels of D0 (DIO0/ADC0/Commissioning Configuration)
through D7 (DIO7/CTS Configuration) that are configured as output pins (either 4 or 5). These values
override the configured output levels of the pins until they are changed again (the pins do not
automatically revert to their configured values after a timeout.)
You can use IO to trigger a sample on change detect.

I/O behavior during sleep
When the device sleeps (SM ! = 0) the I/O lines are optimized for a minimal sleep current.

Digital I/O lines
Digital I/O lines set as digital output high or low maintain those values during sleep. Disabled or input
pins continue to be controlled by the PR/PD settings. Peripheral pins (with the exception of CTS) are

I/O support I/O behavior during sleep

Digi XBee3® 802.15.4 RF Module User Guide 97

set low during sleep and SPI pins are set high. Peripheral and SPI pins resume normal operation upon
wake.
Digital I/O lines that have been set using I/O line passing hold their values during sleep, however the
digital timeout timer (T0 through T9, andQ0 through Q2) are suspended during sleep and resume
upon wake.

Analog and PWM I/O Lines
Lines configured as analog inputs or PWM output are not affected during sleep. PWM lines are shut
down (set low) during sleep and resume normal operation upon wake.
PWM output pins set by analog line passing are shutdown during sleep and revert to their preset
values (M0 andM1) on wake. This happens regardless of whether the timeout has expired or not.

Networking

Networking terms 99
MAC Mode configuration 99
Clear Channel Assessment (CCA) 100
Retries configuration 100
Transmit status based on MAC mode and XBee retries configurations 101
Addressing 102
Peer-to-peer networks 103
Master/slave networks 103
Direct and indirect transmission 106
Encryption 108
Maximum payload 109

Digi XBee3® 802.15.4 RF Module User Guide 98

Networking Networking terms

Digi XBee3® 802.15.4 RF Module User Guide 99

Networking terms
The following table describes some common terms we use when discussing networks.

Term Definition

Association Establishing membership between end devices and a coordinator.

Coordinator A full-function device (FFD) that allows end devices to associate to it and can queue
and deliver indirect messages.

End device When in the same network as a coordinator. Devices that rely on a coordinator for
synchronization and can be put into states of sleep for low-power applications.

PAN Personal Area Network. A data communication network that includes one or more
end devices and optionally a coordinator.

MAC Mode configuration
Medium Access Control (MAC) Mode configures two functions:

1. Enables or disables the use of a Digi header in the 802.15.4 RF packet.
When the Digi header is enabled (MM = 0 or 3), duplicate packet detection is enabled as well as
certain AT commands.
MAC Modes 1 and 2 do not include a Digi header, which disables many features of the device. All
data is strictly pass-through. These modes are intended to provide some compatibility with
third-party 802.15.4 devices.

2. Enables or disables MAC acknowledgment request for unicast packets.
When MAC ACK is enabled (MM = 0 or 2), transmitting devices send packets with an ACK
request so receiving devices send an ACK back (acknowledgment of RF packet reception) to
the transmitter. If the transmitting device does not receive the ACK, it re-sends the packet
up to three times or until the ACK is received.
MAC Modes 1 and 3 disable MAC acknowledgment. Transmitting devices send packets without
an ACK request so receiving devices do not send an ACK back to the transmitter.
Broadcast messages are always sent with the MAC ACK request disabled.

The following table summarizes the functionality.

Mode Digi header MAC ACK

0 (default) X X

1

2 X

3 X

The default value for the MM configuration parameter is 0 which enables both the Digi header and
MAC acknowledgment.

Networking Clear Channel Assessment (CCA)

Digi XBee3® 802.15.4 RF Module User Guide 100

Clear Channel Assessment (CCA)
Prior to transmitting a packet, the device performs a CCA (Clear Channel Assessment) on the channel
to determine if the channel is available for transmission. The detected energy on the channel is
compared with the CA (Clear Channel Assessment) parameter value. If the detected energy exceeds
the CA parameter value, the device does not transmit the packet.
Also, the device inserts a delay before a transmission takes place. You can set this delay using the RN
(Backoff Exponent) parameter. If you set RN to 0, there is no delay before the first CCA is performed.
The RN parameter value is the equivalent of the “minBE” parameter in the 802.15.4 specification. The
transmit sequence follows the 802.15.4 specification.
On a CCA failure, the device attempts to re-send the packet up to three additional times, meaning a
total of four attempts.

CCA operations
CCA is a method of collision avoidance that is implemented by detecting the energy level on the
transmission channel before starting the transmission. The CCA threshold (defined by the CA
parameter) defines the energy level that it takes to block a transmission attempt. For example, if CCA
is set to the default value of 0x32 (which is interpreted as -50 dBm) then energy detected above the -
50 dBm level (for example -45 dBm) temporarily blocks a transmission attempt. But if the energy level
is less than that (for example -70 dBm), the transmission is not blocked. The intent of this feature is to
prevent simultaneous transmissions on the same channel.
You can disable CCA by setting CA to 0. Disabling CCA can improve latency in noisy environments, but it
can also interfere with other devices that are operating on the same channel. Setting or changing CA
to a non-zero value only takes effect upon boot. If you adjust the CA value, ensure that you write the
setting to flash with WR (Write) and restart with an FR (Software Reset).
In the event that the energy level exceeds the threshold, the transmission is blocked for a random
number of backoff periods. The number of backoff periods is defined by the following formula: random
(2^n - 1), where n is defined by the RN parameter and increments after each CCA failure. When RN is
set to its default value of 0, then 2^n -1 is 0, preventing any delay before the first energy detection on
a new frame. However, n increments after each CCA failure, giving a greater range for the number of
backoff periods between each energy detection cycle.
In the event that seven energy detection cycles occur and each one detects too much energy, the
application tries again 1 to 48 ms later. After the application retries are exhausted, then the
transmission fails with a CCA error.
Whenever the MAC code reports a CCA failure, meaning that it performed five energy detection cycles
with exponential random back-offs, and each one failed, the EC parameter is incremented. The EC
parameter can be read at any time to find out how noisy the operating channel is. It continues to
increment until it reaches its maximum value of 0xFFFF. To get new statistics, you can set EC back to
0.

Retries configuration
If you are operating in a MAC Mode that enables MAC ACK (MM=0 or MM=2), each RF packet will be
sent with up to five 802.15.4 MAC-Layer retries, meaning six transmission attempts are performed.
This is enabled by default and provides a minimal amount of reliability to unicast transmissions.
If you are operating in a MAC Mode that enables the Digi header (MM=0 or MM=3), then you can
optionally include Application-Layer retries using the RR (XBee Retries) command. Each Application-
Layer retry attempt to send the packet using five MAC-Layer retries. This can greatly increase the
reliability of unicast transmissions with a risk of reduced throughput.

Networking Transmit status based on MACmode and XBee retries configurations

Digi XBee3® 802.15.4 RF Module User Guide 101

Transmit status based on MAC mode and XBee retries
configurations

When working in API mode, a transmit request frame sent by the user is always answered with a
transmit status frame sent by the device, if the frame ID is non-zero. A Frame ID of 0 specifies that the
packet should be sent without an acknowledgment.
The following tables report the expected transmit status for unicast transmissions and the maximum
number of MAC and application retries the device attempts.
The tables also report the transmit status reported when the device detects energy above the CCA
threshold (when a CCA failure happens).
The following table applies in either of these cases:

l Digi header is disabled.
l Digi header is enabled and XBee Retries (RR parameter) is equal to 0 (default configuration).

Mac ACK
Config

Destination reachable Destination unreachable
CCA failure
happened

TX status

Retries

TX status

Retries
TX
status

Retries

MAC App MAC App MAC App

Enabled 00
(Success)

up to
5

0 01 (No
acknowledgment
received)

5 0 02 (CCA
failure)

5 0

Disabled 00
(Success)

0 0 00 (Success) 0 0 02 (CCA
failure)

5 0

The following table applies when:

l Digi header is enabled and XBee Retries (RR parameter) > 0.

Mac ACK
Config

Destination reachable
Destination
unreachable CCA failure happened

TX status

Retries

TX status

Retries
TX
status

Retries

MAC App MAC App MAC App

Enabled 00
(Success)

up to 5
per
app
retry

up to
RR
value

21
(Network
ACK
Failure)

5 RR
value

02
(CCA
failure)

5 RR value

Disabled 00
(Success)

0 up to
RR
value

21
(Network
ACK
Failure)

0 RR
value

02
(CCA
failure)

5 RR value

Networking Addressing

Digi XBee3® 802.15.4 RF Module User Guide 102

Addressing
Every RF data packet sent over-the-air contains a Source Address and Destination Address field in its
header. The XBee3 802.15.4 RF Module conforms to the 802.15.4 specification and supports both short
16-bit addresses and long 64-bit addresses. A unique 64-bit IEEE source address is assigned at the
factory and can be read with the SL (Serial Number Low) and SH (Serial Number High) commands. A
device uses its unique 64-bit address as its Source Address if its MY (16-bit Source Address) value is
0xFFFF or 0xFFFE. Since the default value for MY is 0, devices use short source addressing by default.

Send packets to a specific device in Transparent API mode
To send a packet to a specific device using 64-bit addressing:

n Set the Destination Address (DL + DH) of the sender to match the Source Address (SL + SH) of
the intended destination device.

To send a packet to a specific device using 16-bit addressing:

1. Set the DL parameter to equal the MY parameter of the intended destination device.
2. Set the DH parameter to 0.

Addressing modes
802.15.4 frames have a source address, a destination address, and a destination PAN ID in the over-
the-air (OTA) frame. The source and destination addresses may be either long or short and the
destination address may be either a unicast or a broadcast. The destination PAN ID is short and it may
also be the broadcast PAN ID (ID is set to 0xFFFF).
In Transparent mode, the destination address is set by the DH and DL parameters, but, in API mode, it
is set by the type of TX request used: TX Request: 64-bit address frame - 0x00 or TX Request: 16-bit
address - 0x01 frames. In either Transparent mode or API mode, the destination PAN ID is set with the
ID parameter, and the source address is set with the MY parameter if MY is less than 0xFFFE,
otherwise the source address is set with the device's serial number (SH and SL).

Broadcasts and unicasts
Broadcasts are identified by the 16-bit short address of 0xFFFF. Any other destination address is
considered a unicast and is a candidate for acknowledgments, if enabled.

Broadcast PAN ID
The Broadcast PAN ID is also 0xFFFF. Its effect is to traverse all PANs in the vicinity of a local device.

Short and long addresses
A short address is 16 bits and a long address is 64 bits. The short address is set with the MY
parameter. If the short address is 0xFFFE, then the address of the device is long and it is the serial
number of the device as read by the SH and SL parameters.

Networking Peer-to-peer networks

Digi XBee3® 802.15.4 RF Module User Guide 103

Peer-to-peer networks

By default, XBee3 802.15.4 RF Modules are configured to operate within a peer-to-peer network
topology and therefore are not dependent uponmaster/slave relationships. Our peer-to-peer
architecture features fast synchronization times and fast cold start times. This default configuration
accommodates a wide range of RF data applications.
To form a peer-to-peer network, set each device to the same channel and PAN ID and configure either
a unique short address (MY) for each device or set MY to 0xFFFF to use the unique long addresses.

Master/slave networks
In a Master Slave network, there is a coordinator and one or more end devices. When end devices
associate to the coordinator, they become members of that Personal Area Network (PAN). As such,
they share the same channel and PAN ID. PAN IDs must be unique to prevent miscommunication
between PANs. Depending on the A1 and A2 parameters, association may assist in automatically
assigning the PAN ID and the channel. These parameters are specified below based on the network
role (end device or coordinator).

End device association
End device association occurs if CE is 0 and A1 has bit 2 set. See the following table and A1 (End Device
Association).

Bit Hex value Meaning

0 0x01 Allow PAN ID reassignment

1 0x02 Allow channel reassignment

2 0x04 Auto association

3 0x08 Poll coordinator on pin wake

By default, A1 is 0, which disables association and causes a device to operate in peer-to-peer mode.
When bit 2 is set, the module becomes an end device and associates to a coordinator. This is done by
sending out an active scan to detect beacons from nearby networks. The active scan iterates through
each channel defined by SC and transmits a Beacon Request command to the broadcast address and
the broadcast PAN ID. It then listens on that channel for beacons from any coordinator operating on
that channel. Once that time expires, the active scan selects the next channel, repeating until all the
channels defined by SC have been scanned.
If A1 is 0x04 (bit 0 clear, bit 1 clear, and bit 2 set), then the active scan will reject all beacons that do
not match both the configured PAN ID and the configured channel. This is the best way to join a
particular coordinator.
If A1 is 0x05 (bit 0 set, bit 1 clear, and bit 2 set), then the active scan will accept a beacon from any
PAN ID, providing the channel matches. This is useful if the channel is known, but not the PAN ID.

Networking Master/slave networks

Digi XBee3® 802.15.4 RF Module User Guide 104

If A1 is 0x06 (bit 0 clear, bit 1 set, and bit 2 set), then the active scan will accept a beacon from any
channel, providing the PAN ID matches. This is useful if the PAN ID is known, but not the channel.
If A1 is 0x07 (bit 0 set, bit 1 set, and bit 2 set), then the active scan will accept a beacon from any PAN
ID and from any channel. This is useful when the network does not matter, but the one with the best
signal is desired.
Whenever multiple beacons are received that meet the criteria of the active scan, then the beacon
with the best link quality is selected. This applies whether A1 is 0x04, 0x05, 0x06, or 0x07.
Before the End Device joins a network, the Associate LED will be on solid. After it joins a network, the
Associate LED will blink twice per second. You can also query the association status with AI
(Association Indication) or by observing modem status frames when the end device is operating in API
mode.
If association parameters are changed after the end device is associated, the end device will leave the
network and re-join in accordance with the new configuration parameters.
After an end device successfully joins a network, the DH and DL parameters on the device are updated
to point towards the address of the coordinator it associated with. This allows communication to the
coordinator to occur automatically in Transparent mode, and ensures that indirect messaging poll
requests are sent to the correct address—see Direct and indirect transmission.
Additionally, after associating, an end device has MY (16-bit Source Address) set to 0xFFFE, indicating
that the newly associated end device should use its 64-bit address. After associating, if you want a 16-
bit address for the end device, set MY again.

Note MY is reset to 0xFFFE if the end device needs to leave and re-associate with the coordinator.

If a coordinator changes channel or PAN ID, the end device is not informed of the change and indicates
that it is still associated. You can set DA (Force Disassociation) on the end device to force it to leave
the network and attempt to join again, validating that the end device can still communicate with the
coordinator.

Coordinator association
A device becomes a coordinator and allows association if CE is 1 and A2 has bit 2 set. See the following
table and A2 (Coordinator Association).

Bit Hex value Meaning

0 0x01 Allow PAN ID reassignment

1 0x02 Allow channel reassignment

2 0x04 Allow association

By default, A2 is 0, which prevents devices from associating to the coordinator. So, if CE is 1 and A2 bit
2 is 0, the device still creates a network, but end devices are unable to associate to it.

Note In this configuration, depending on the value of SP (Cyclic Sleep Period) the device might send
messages indirectly—see Direct and indirect transmission.

If A2 bit 2 is set, then joining is allowed after the coordinator forms a network.
If A2 bit 0 is set, the coordinator performs an active scan. The active scan process sends a beacon
request to the broadcast address (0xFFFF) and the broadcast PAN ID (0xFFFF) and listens for beacons
responses. This process is repeated for each channel specified in SC.

Networking Master/slave networks

Digi XBee3® 802.15.4 RF Module User Guide 105

If none of the beacons received during the active scan process match the ID parameter of the
coordinator, then its ID parameter will be the PAN ID of the new network it forms. However, if a
beacon response matches the PAN ID of the coordinator, the coordinator forms a PAN with a unique
PAN ID.
If A2 bit 0 is clear, then the coordinator forms a network on the PAN ID identified by the ID parameter,
without regard to another network that might have the same PAN ID.
If A2 bit 1 is set, the coordinator performs an energy scan, similar to the active scan. It will listen on
each channel specified in the SC parameter. After the scan is complete, the channel with the least
energy is selected to form the new network.
If A2 bit 1 is clear, then no energy scan is performed and the CH parameter is used to select the
channel of the new network.
If bits 0 and 1 of A2 are both set, then an active scan is performed followed by an energy scan.
However, the channels on which the active scan finds a coordinator are eliminated as possible
channels for the energy scan, unless such an action would eliminate all channels. If beacons are found
on all channels in the channel mask, then then the energy scan behaves the same as it would if
beacons are not found on any of those channels. Therefore, the active scan will be performed on all
channels in the channel mask. Then, an energy scan will be performed on the channels in the channel
mask that did not find a coordinator.
Depending on the result of the active scan, the set of channels for the energy scan varies. If a PAN ID
is found on all the channels in the channel mask, then the energy scan operates on all the channels in
the channel mask. If at least one of the channels in the channel mask did not find a PAN ID, then the
channels with PAN IDs are eliminated from consideration for the energy scan. After the energy scan
completes, the channel with the least energy is selected for forming the new network.
Whenever CE, ID, A2, or MY changes, the coordinator will re-form the network. Any end devices
associated to the coordinator prior to changing one of these parameters will lose association. For this
reason, it is important not to change these parameters on a coordinator unless needed, or configure
end devices to be flexible about what network they associate with the A1 command.
Before the Coordinator forms a network, the Associate LED will be on solid. After it forms a network,
the Associate LED will blink once per second.

Association indicators
There are two types of association indicators: Asynchronous device status messages, and on demand
queries. Asynchronous device status messages occur whenever a change occurs and API mode is
enabled. On demand queries occur when the AI command is issued, which can occur in Command
mode, in API mode, or as a remote command.

Modem status messages
Not all device status messages are related with association, but for completeness all device status
types reported by XBee3 802.15.4 RF Module are listed in the following table.

Type Meaning

0x00 Hardware reset.

0x01 Watchdog reset.

0x02 End device successfully associated with a coordinator.

0x03 End device disassociated from coordinator or coordinator failed to form a new network.

Networking Direct and indirect transmission

Digi XBee3® 802.15.4 RF Module User Guide 106

Type Meaning

0x06 Coordinator formed a new network.

0x0D Input voltage is too high, which prevents transmissions.

Association indicator status codes
The XBee3 802.15.4 RF Module can potentially give any of the status codes in response to AI
(Association Indication) in the following table.

Code Meaning

0x00 Coordinator successfully started, End device successfully associated, or operating in peer to
peer mode where no association is needed.

0x03 Active Scan found a PAN coordinator, but it is not currently accepting associations.

0x04 Active Scan found a PAN coordinator in a beacon-enabled network, which is not a supported
feature.

0x05 Active Scan found a PAN, but the PAN ID does not match the configured PAN ID on the
requesting end device and bit 0 of A1 is not set to allow reassignment of PAN ID.

0x06 Active Scan found a PAN on a channel does not match the configured channel on the
requesting end device and bit 1 of A1 is not set to allow reassignment of the channel.

0x0C Association request failed to get a response.

0x13 End device is disassociated or is in the process of disassociating.

0xFF Initialization time; no association status has been determined yet.

Direct and indirect transmission
There are two methods to transmit data:

n Direct transmission: data is transmitted immediately to the Destination Address
n Indirect transmission: a packet is retained for a period of time and is only transmitted after the

destination device (source address = destination address) requests the data.

Indirect transmissions can only occur on a device configured to be an indirect messaging coordinator.
Indirect transmissions are useful to ensure packet delivery to a sleeping device. Indirect messaging
allows messages to reliably be sent asynchronously to sleeping end devices, or operate like an
incoming mailbox for a P2P network. A TX request can be made when the end device is sleeping and
unable to receive RF data, and instead of being immediately send to an inoperative device, the packet
is queued by the indirect messaging coordinator until the end device wakes or polls it for data.
Note that indirect messaging works best with association and end devices cyclically sleeping, but can
be used in a P2P configuration by setting CE (Coordinator Enable) to 1 on the device that you want to
hold the indirect messages and configuring the other device to poll correctly. In the context of indirect
messaging, an end device refers not just to a device with A1 (End Device Association) set to associate
but the target of an indirect message. Similarly, an indirect messaging coordinator does not have to
allow association (A2 (Coordinator Association)) to sendmessages indirectly.

Networking Direct and indirect transmission

Digi XBee3® 802.15.4 RF Module User Guide 107

Configure an indirect messaging coordinator
A device becomes an indirect messaging coordinator once CE (Coordinator Enable) = 1 and SP (Cyclic
Sleep Period) is not 0. We recommend ensuring that SP and ST are set to the same values on the
indirect messaging coordinator and end device, even if the indirect messaging coordinator is not
configured to sleep. This is to allow the indirect messaging coordinator to sendmessages directly if it
knows the end device is awake and sleeping cyclically.
If you are going to use a Master/Slave network with indirect messaging, ensure that the indirect
messaging coordinator is also the network coordinator by allowing association (set bit 2 of A2
(Coordinator Association) to 1).

Send indirect messages
To send an indirect message, ensure that the previous requirements are met and transmit normally.
The indirect messaging coordinator queues the message until the end device requests data or the
message is in the indirect queue for 2.5 times the value of SP. If 2.5 * SP is longer than 65 seconds,
then 65 seconds is the limit the indirect message waits for a poll before it is discarded. This means
that if the coordinator is sending data to the end device, the end device should poll the coordinator
every 65 seconds to avoid losing data, regardless of the value of SP.
Ensure that the message is sent to the addressed specified by MY (16-bit Source Address) on the end
device. If MY on the end device is 0xFFFF or 0xFFFE, then you must use the 64-bit address, otherwise
use the value of MY. Even though an end device configured with a short address always receives direct
transmissions destined to its 64-bit address, it will not receive an indirect message directed at its 64-
bit address if it is configured to use a 16-bit address.
If the indirect messaging coordinator is operating in API mode, then after transmitting an indirect
message the usual TX status frame (Transmit Status frame - 0x8B or TX Status frame - 0x89) is not
immediately generated by the device. If the end device polls for the data within the timeout (2.5 * SP
or 65 seconds), then a TX status frame with status 0x00 (message sent) is sent. If the message is
discarded due to the timeout expiring, the status frame is 0x03 (message purged).
After receiving a poll request and transmitting data to an end device, the indirect messaging
coordinator sends all messages directly until ST time has elapsed. This is because after receiving RF
data, the end device stays awake for ST time if configured in Cyclic Sleepmode (SM = 4). After ST time
has elapsed, messages are sent indirectly again.
The Coordinator currently is able to retain up to five indirect messages.

Receive indirect messages
End devices must poll the indirect messaging coordinator in order to receive indirect messages.
There are three ways to generate a poll request:

n End devices using cyclic sleep automatically send a poll to the coordinator when they wake up
unless SO bit 0 is set.

n End devices using pin sleepmay be configured to send a poll on a pin wakeup by setting bit 3 of
A1.

n Use FP (Force Poll) to manually send a poll to the coordinator. In Transparent mode, the poll
request is not sent until the command is exited.

The poll is sent to the address located in DH and DL, so ensure that they are set to match the
coordinator's source addressing mode. If the end device (A1 bit 2 set) has associated with a
coordinator (A2 bit 2 set and CE = 1), then DH and DL are automatically set to the correct values. If

Networking Encryption

Digi XBee3® 802.15.4 RF Module User Guide 108

you use indirect messaging in a P2P network, DH and DL have to be set manually on the end device to
point towards the indirect messaging coordinator.
It is more difficult to use indirect messaging with pin sleep than with cyclic sleep because the end
device must wake up periodically to poll for the data from the coordinator. Otherwise, the coordinator
discards the data after SP*2.5 time, or 65 seconds, whichever is smaller. It is also important to keep
the pin woke device awake for ST time after receiving indirect messages, otherwise the coordinator
could attempt to transmit directly while the end device is asleep, and the transmission will fail. For
this reason we recommend only using indirect messaging with cyclic sleep.

Encryption
The XBee3 802.15.4 RF Module supports AES 128-bit encryption. 128-bit encryption refers to the
length of the encryption key entered with the KY command (128 bits = 16 bytes). The 802.15.4
protocol specifies eight security modes, enumerated as shown in the following table.

Level Name Encrypted?
Length of message integrity
check

Packet length
overhead

0 N/A No 0 (no check) 0

1 MIC-32 No 4 9

2 MIC-64 No 8 13

3 MIC-128 No 16 21

4 ENC Yes 0 (no check) 5

5 ENC-MIC-32 Yes 4 9

6 ENC-MIC-64 Yes 8 13

7 ENC-MIC-128 Yes 16 21

The XBee3 802.15.4 RF Module only supports security levels 0 and 4. It does not support message
integrity checks. EE 0 selects security level 0 and EE 1 selects security level 4. When using encryption,
all devices in the network must use the same 16-byte encryption key for valid data to get through.
Mismatched keys will corrupt the data output on the receiving device. Mismatched EE parameters will
prevent the receiving device from outputting received data.
Working from a maximum packet size of 116 bytes, encryption affects the maximum payload as shown
in the following table.

Factor

Effect on
maximum
payload Comment

Compatibility
mode

Force to 95 If C8 bit 0 is set, all packets are limited to 95 bytes, regardless of other
factors listed below. This is how the Legacy 802.15.4 module (S1
hardware) functions.

Packet
overhead

Reduce by 5 This penalty for enabling encryption is unavoidable due to the 802.15.4
protocol.

Networking Maximum payload

Digi XBee3® 802.15.4 RF Module User Guide 109

Factor

Effect on
maximum
payload Comment

Source
address

Reduce by 6 This penalty is unavoidable because the 802.15.4 requires encrypted
packets to be sent with a long source address, even if a short address
would otherwise be used.

Destination
address

Reduce by 6 This penalty only applies if sending to a long address rather than a
short address.

App header Reduce by 4 The app header for encryption is 4 bytes long. This penalty only applies
if MM = 0 or 3.

Because of the two mandatory reductions when using encryption, no packet can exceed 116 - (5+6)
=105 bytes. The other options may further reduce the maximum payload to 101 bytes, 99 bytes, or 95
bytes.
When operating in API mode and not using encryption, if the source address is long, the receiving
device outputs an RX Indicator (0x80) frame for received data. But, if the source address is short, the
receiving device outputs a Receive Packet (0x81) frame for received data. These same rules apply for
encryption if MM is 0 or 3. This is possible because the four-byte encryption App header includes the
short address of the sender and the long received address is not used for API output. If encryption is
enabled withMM of 1 or 2, then no App header exists, the source address is always long, and the
receiving device in legacy API mode (AP = 2) always outputs a RX Packet: 64-bit Address frame - 0x80.

Maximum payload
The absolute maximum payload size for an 802.15.4 packet is 116 bytes. Depending onmodule
configuration, the actual maximum payload size will be reduced.
If you attempt to send an API packet with a larger payload than specified, the device responds with a
Transmit Status frame (0x89 and 0x8B) with the Status field set to 74 (Data payload too large). When
operating in transparent mode, if you attempt to send data larger than the maximum payload size,
the data will be packetized and sent as multiple over-the-air transmissions. For more information, see
Serial-to-RF packetization.

Maximum payload rules
1. If you enable transmit compatibility (C8) with the Legacy 802.15.4 module (S1 hardware):

n There is a fixedmaximum payload of 100 bytes
n The rest of the rules do not apply. They apply only when you disable transmit

compatibility with the Legacy 802.15.4 module.
2. The maximum achievable payload is 116 bytes. This is achieved when:

n Not using encryption.
n Not using the application header (MM is set to 1 or 2).
n Using the short source address.
n Using the short destination address.

Networking Maximum payload

Digi XBee3® 802.15.4 RF Module User Guide 110

3. If you are using the application header, the maximum achievable payload is reduced by:
n 2 bytes if not using encryption (EE = 0)
n 4 bytes if using encryption (EE = 1)

4. If you are using the long source address (MY = 0xFFFE), the maximum achievable payload is
reduced by 6 bytes (size of long address (8) - size of short address (2) = 6).

5. If you are using encryption, the source addresses are promoted to long source addresses, so
the maximum achievable payload is reduced by 6 bytes.

6. If you are using the long destination address, the maximum achievable payload is reduced by 6
bytes (the difference between the 8 bytes required for a long address and the 2 bytes required
for a short address).

7. If you are using encryption, the maximum achievable payload is reduced by 5 bytes.

Note You can query NP (Maximum Packet Payload Bytes) to determine the maximum achievable
payload size based on current parameters. NP always assumes a long destination address will be
used.

Maximum payload summary tables
The following table indicates the maximum payload when using transmit compatibility with Legacy
802.15.4 modules (S1 hardware).

Encryption

Enabled Disabled

95 B 100 B

The following table indicates the maximum payload when using the application header and not using
encryption. Increment the maximum payload in 2 bytes if you are not using the application header.

Destination address

Source address Short Long

Short 114 B 108 B

Long 108 B 102 B

The following table indicates the maximum payload when using the application header and using
encryption. Increment the maximum payload in 4 bytes if you are not using the application header.

Destination address

Source address Short Long

Short 101 B 95 B

Long 101 B 95 B

Networking Maximum payload

Digi XBee3® 802.15.4 RF Module User Guide 111

Working with Legacy devices
The Legacy 802.15.4 module (S1 hardware) transmits packets one by one. It does not transmit a
packet until it receives all expected acknowledgments of the previous packet or the timeout expires.
The XBee/XBee-PRO S2C 802.15.4 and XBee3 802.15.4 RF Modules enhance transmission by
implementing a transmission queue that allows the device to transmit to several devices at the same
time. Broadcast transmissions are performed in parallel with the unicast transmissions.
This enhancement in the XBee/XBee-PRO S2C 802.15.4 and XBee3 802.15.4 RF Modules can produce
problematic behavior under certain conditions if the receiver is a Legacy 802.15.4 module (S1
hardware).
The conditions are:

n The sender is an XBee3 802.15.4 RF Module, and the receiver is a Legacy 802.15.4 module.
n The sender has the Digi header enabled (MM = 0 or 3) and RR (XBee Retries) > 0.
n The sender sends broadcast and unicast messages at the same time to the Legacy 802.15.4

module without waiting for the transmission status of the previous packet.

The effect is:

n The receiver may display duplicate packets.

The solution is:

n Set bit 0 of the C8 (802.15.4 compatibility) parameter to 1 to enable TX compatibility mode in the
XBee3 802.15.4 RF Module. This eliminates the transmission queue to avoid sending to multiple
addresses simultaneously. It also limits the packet size to the levels of the Legacy 802.15.4
module.

For information on the specific differences between an XBee3 and Legacy 802.15.4 devices, refer to
the Digi XBee3 802.15.4 Migration Guide.

https://www.digi.com/resources/documentation/Digidocs/PDFs/90002279.pdf

Network commissioning and diagnostics

We call the process of discovering and configuring devices in a network for operation, "network
commissioning." Devices include several device discovery and configuration features. In addition to
configuring devices, you must develop a strategy to place devices to ensure reliable routes. To
accommodate these requirements, modules include features to aid in placing devices, configuring
devices, and network diagnostics.

Remote configuration commands 113
Node discovery 113

Digi XBee3® 802.15.4 RF Module User Guide 112

Network commissioning and diagnostics Remote configuration commands

Digi XBee3® 802.15.4 RF Module User Guide 113

Remote configuration commands
When running in API mode, the firmware has provisions to send configuration commands to remote
devices using Remote AT Command Request frame - 0x17. You can use this frame to send commands
to a remote device to read or set command parameters.

CAUTION! It is important to set the short address to 0xFFFE when sending to a long address.
Any other value causes the long address to be ignored. This is particularly problematic in the
case where nodes are set up with default addresses of 0 and the 16-bit address is
erroneously left at 0. In that case, even with a correct long address the remote command
goes out to all devices with the default short address of 0, potentially resulting in harmful
consequences, depending on the command.

Send a remote command
To send a remote command populate the Remote AT Command Request frame (0x17) with:

1. The 64-bit address of the remote device.
2. The correct command options value.
3. The command and parameter data (optional). If (and only if) all nodes in the PAN have unique

short addresses, then remote configuration commands can be sent to 16-bit short addresses
by setting the short address in the API frame for Remote AT commands. In that case, the 64-bit
address is unused and does not matter.

Apply changes on remote devices
Any changes you make to the configuration command registers using AT commands do not take effect
until you apply the changes. For example, if you send the BD command to change the baud rate, the
actual baud rate does not change until you apply the changes. To apply changes:

1. Set the Apply Changes option bit in the Remote AT Command Request frame (0x17).
2. Issue an AC (Apply Changes) command to the remote device.
3. Issue a WR + FR command to the remote device to save changes and reset the device.

Remote command responses
If the remote device receives a Remote AT Command Request (0x17 frame type), the remote sends an
AT Command Response (0x88 frame type) back to the device that sent the remote command. The AT
command response indicates the status of the command (success, or reason for failure), and in the
case of a command query, it includes the parameter value.
The device that sends a remote command will not receive a remote command response frame if the
frame ID in the remote command request is set to 0 , indicating that the request is sent without
acknowledgment.

Node discovery
Node discovery has three variations as shown in the following table:

Network commissioning and diagnostics Node discovery

Digi XBee3® 802.15.4 RF Module User Guide 114

Commands Syntax Description

ND
(Network
Discover)

ND Seeks to discover all nodes in the network (on the current PAN ID).

ND
(Network
Discover)

ND<NI
String>

Seeks to discover if a particular node named <NI String> is found in the
network.

DN
(Discover
Node)

DN<NI
String>

Sets DH/DL to point to the address (64-bit or 16-bit depending on the MY
value of the matching node) of the node whose <NI String> matches.

The node discovery command (without an NI string designated) sends out a broadcast to every node
in the PAN ID. Each node in the PAN sends a response back to the requesting node after a jittered
time delay to ensure reliable delivery.

About node discovery
The node discovery command (without an NI string designated) sends out a broadcast to every node
in the PAN ID. Each node in the PAN sends a response back to the requesting node.
When the node discovery command is issued in AT commandmode, all other AT commands are
inhibited until the node discovery command times out, as specified by the NT parameter. After the
timeout, an extra CRLF is output to the terminal window, indicating that new AT commands can be
entered. This is the behavior whether or not there were any nodes that responded to the broadcast.
When the node discovery command is issued in API mode, the behavior is the same except that the
response is output in API mode. If no nodes respond, there will be no responses at all to the node
discover command. The requesting node is not able to process a new AT command untilNT times out.

Node discovery in compatibility mode
Node discovery (without an NI string parameter) in compatibility mode operates the same in
compatibility mode as it does outside of compatibility mode with one minor exception:
If C8 bit 1 is set and if requesting node is operating in API mode and if no responses are received by
the time NT times out, then an API AT command response of OK (API frame type 0x88) is sent out the
serial port rather than giving no response at all, which would happen if C8 bit 1 is not set.

Directed node discovery
The directed node discovery command (NDwith an NI string parameter) sends out a broadcast to find
a node in the network with a matching NI string. If such a node exists, it sends a response with its
information back to the requesting node.
In Transparent mode, the requesting node will output an extra CRLF following the response from the
designated node and the command will terminate, being ready to accept a new AT command. In the
event that the requested node does not exist or is too slow to respond, the requesting node outputs
an ERROR response after NT expires.
In API mode, the response from the requesting node will be output in API mode and the command will
terminate immediately. If no response comes from the requested node, the requesting node outputs
an error response in API mode after NT expires.

Network commissioning and diagnostics Node discovery

Digi XBee3® 802.15.4 RF Module User Guide 115

Directed node discovery in compatibility mode
The behavior of the Legacy 802.15.4 module (S1 hardware) varies with the default behavior described
above for the directed node discovery command. The Legacy module does not complete the command
untilNT expires, even if the requested node responds immediately. After NT expires, it gives a
successful response, even if the requested node did not respond. To enable this behavior to be
equivalent to the Legacy 802.15.4 module, set bit 1 of the C8 parameter.

Destination Node
DN (Discover Node) with anNI (Node Identifier) string parameter sends out a broadcast containing the
NI string being requested. The responding node with a matching NI string sends its information back
to the requesting node. The local node then sets DH/DL to match the address of the responding node.
As soon as this response occurs, the command terminates successfully. If operating in Command
mode, anOK string is output and Commandmode exits. In API mode another AT commandmay be
entered.
If an NI string parameter is not provided, the DN command terminates immediately with an error. If a
node with the given NI string doesn't respond, the DN command terminates with an error after NT
times out.
Unlike ND (with or without an NI string), DN does not cause the information from the responding node
to be output; rather it simply sets DH/DL to the address of the responding node. If the responding
node has a short address, then DH/DL is set to that short address (with DH at 0 and DL set to the
value of MY). If the responding node has a long address (MY is 0xFFFE), then DH/DL are set to the
SH/SL of the responding node.

Sleep support

Sleep is implemented to support installations where a mains power source is not available and a
battery is required. In order to increase battery life, the device sleeps, which means it stops operating.
It can be woken by a timer expiration or a pin.

Sleepmodes 117
Sleep parameters 118
Sleep pins 118
Sleep conditions 119

Digi XBee3® 802.15.4 RF Module User Guide 116

Sleep support Sleep modes

Digi XBee3® 802.15.4 RF Module User Guide 117

Sleep modes
Sleepmodes enable the device to enter states of low-power consumption when not in use. To enter
Sleepmode, the following conditions must be met:

n A valid sleepmode is selected via SM (SM = 1, 4, 5, or 6)
n DTR/SLEEP_RQ (TH pin 9/SMT pin 10) is asserted (when SM = 1 or 5)
n The device is idle (no data transmission or reception) for the amount of time defined by ST

(Time before Sleep) (when SM = 4 or 5)

The following table shows the sleepmode configurations.

Sleep
mode Description

SM 0 No sleep

SM 1 Pin sleep

SM 4 Cyclic sleep

SM 5 Cyclic sleep with pin wake-up

SM 6 MicroPython sleep (with optional pin wake). For complete details see the Digi
MicroPython Programming Guide.

Pin Sleep mode (SM = 1)
Pin Sleepmode minimizes quiescent power (power consumed when in a state of rest or inactivity). In
order to use Pin Sleepmode, configure D8 (DIO8/DTR/SLP_Request Configuration) (TH pin 9/SMT pin
10) for DTR/SLEEP_RQ input (D8 = 1). This mode is voltage level-activated; when SLEEP_RQ is
asserted, the device finishes any transmit or receive activities, enters Idle mode, and then enters a
state of sleep. The device does not respond to either serial or RF activity while in pin sleep.
To wake a sleeping device operating in Pin Sleepmode, de-assert DTR/SLEEP_RQ. The device wakes
when SLEEP_RQ is de-asserted and is ready to transmit or receive when the CTS line is low. When
waking the device, the pin must be de-asserted at least two 'byte times' after CTS goes low. This
assures that there is time for the data to enter the DI buffer.
Devices with SPI functionality can use the SPI_SSEL pin instead of D8 for pin sleep control. If D8 = 0
and P7 = 1, SPI_SSEL takes the place of DTR/SLEEP_RQ and functions as described above. In order to
use SPI_SSEL for sleep control while communicating on the UART, the other SPI pins must be disabled
(P5, P6, and P8 set to 0). See Low power operation for information on using SPI_SSEL for sleep control
while communicating over SPI.

Cyclic Sleep mode (SM = 4)
The Cyclic Sleepmodes allow devices to periodically check for RF data. When the SM parameter is set
to 4, the XBee3 802.15.4 RF Module is configured to sleep, then wakes once per cycle to check for data
from a coordinator. The Cyclic Sleep Remote sends a poll request to the coordinator at a specific
interval set by the SP (Cyclic Sleep Period) parameter. The coordinator transmits any queued data
addressed to that specific remote upon receiving the poll request.
If the coordinator does not respond with queued data and no UART activity is detected, the device will
immediately sleep. If it detects any activity (RF or UART), then the device wakes for ST time. You can
also set SO bit 8 to force the device to always wake for the full ST time.

https://www.digi.com/resources/documentation/Digidocs/90002219/
https://www.digi.com/resources/documentation/Digidocs/90002219/

Sleep support Sleep parameters

Digi XBee3® 802.15.4 RF Module User Guide 118

ON_SLEEP goes high and CTS goes low each time the remote wakes, allowing for communication
initiated by the remote host if desired.

Cyclic Sleep with Pin Wake-up mode (SM = 5)
Use this mode to wake a sleeping remote device through either the RF interface or by asserting (low)
DTR/SLEEP_RQ for event-driven communications. The cyclic sleepmode works as described previously
with the addition of a pin-controlled wake-up at the remote device.
The DTR/SLEEP_RQ pin is level-triggered. The device wakes when a low is detected then sets CTS low
as soon as it is ready to transmit or receive. The device stays awake as long as DTR/SLEEP_RQ is low;
once DTR/SLEEP_RQ goes high the device returns to cyclic sleep operation. If DTR/SLEEP_RQ is
momentarily pulsed low, the minimum wake time is ST (Time before Sleep) even if DTR/SLEEP_RQ is
low for less time.
Once awake, any activity resets the ST (Time before Sleep) timer, so the device goes back to sleep
only after there is no RF activity for the duration of the timer.

MicroPython sleep with optional pin wake (SM = 6)
The MicroPython sleep option allows a user's MicroPython program to exclusively control the device's
sleep operation (with optional pin wake). For full details refer to the Digi MicroPython Programming
Guide.

Sleep parameters
The following AT commands are associated with the sleepmodes. See the linked commands for the
parameter's description, range and default values.

n SM (Sleep Mode)
n SP (Cyclic Sleep Period)
n ST (Time before Sleep)
n DP (Disassociated Cyclic Sleep Period)
n SO (Sleep Options)

Sleep pins
The following table describes the three external device pins associated with sleep. See the XBee3 RF
Module Hardware Reference Manual for the pinout of your device.

Pin name Description

DTR/SLEEP_
RQ

For SM = 1, high puts the device to sleep and low wakes it up. For SM = 5, a high to
low transition wakes the device until the pin transitions back to a high state.

SPI_SSEL Alternative SLEEP_RQ line for devices operating in SPI. See Low power operation for
further information.

CTS If D7 = 1, high indicates that the device is asleep and low indicates that it is awake
and ready to receive serial data.

ON_SLEEP Low indicates that the device is asleep and high indicates that it is awake.

https://www.digi.com/resources/documentation/Digidocs/90002219/
https://www.digi.com/resources/documentation/Digidocs/90002219/
https://www.digi.com/resources/documentation/digidocs/90001543/default.htm
https://www.digi.com/resources/documentation/digidocs/90001543/default.htm

Sleep support Sleep conditions

Digi XBee3® 802.15.4 RF Module User Guide 119

Sleep conditions
Since instructions stop executing while the device is sleeping, it is important to avoid sleeping when
the device has work to do. For example, the device will not sleep if any of the following are true:

1. The device is operating in Commandmode, or in the process of getting into Commandmode
with the +++ sequence.

2. The device is processing AT commands from API mode
3. The device is processing remote AT commands
4. Something is queued to the serial port and that data is not blocked by RTS flow control

If each of the above conditions are false, then sleepmay still be blocked in these cases:

1. Enough time has not expired since the device has awakened.
a. If the device is operating in pin sleep, the amount of time needed for one character

to be received on the UART is enough time.
b. If the device is operating in cyclic sleep, enough time is defined by a timer. The

duration of that timer is:
i. defined by ST if in SM 5 mode and it is awakened by a pin
ii. 30 ms to allow enough time for a poll and a poll response
iii. 750 ms to allow enough time for association, in case that needs to

happen
c. In addition, the wake time is extended by an additional ST time when new OTA data

or serial data is received.
2. Sleep Request pin is not asserted when operating in pin sleepmode
3. Data is waiting to be sent OTA.

AT commands

Network and security commands 121
Coordinator/End Device configuration commands 126
802.15.4 Addressing commands 130
Security commands 132
RF interfacing commands 134
MAC diagnostics commands 136
Sleep settings commands 138
UART interface commands 140
Commandmode options 144
UART pin configuration commands 145
SPI interface commands 147
I/O settings commands 149
I/O sampling commands 158
I/O line passing commands 161
Location commands 165
Diagnostic commands - firmware/hardware information 166
MicroPython commands 168
File system commands 170
Memory access commands 172
BLE commands 173
Custom default commands 174

Digi XBee3® 802.15.4 RF Module User Guide 120

AT commands Network and security commands

Digi XBee3® 802.15.4 RF Module User Guide 121

Network and security commands
The following commands affect the 802.15.4 network.

CH (Operating Channel)
Set or read the operating channel devices used to transmit and receive data.
In order for devices to communicate with each other, they must share the same channel number. A
network can use different channels to prevent devices in one network from listening to the
transmissions of another and to reduce interference.
The command uses IEEE 802.15.4 channel numbers.

Parameter range
0xB - 0x1A

Default
0xC (channel 12)

ID (Extended PAN ID)
Set or read the user network identifier.
Devices must have the same network identifier to communicate with each other.
Devices can only communicate with other devices that have the same network identifier and channel
configured.
Setting ID to 0xFFFF indicates a global transmission for all PANs. It does not indicate a global receive.

Parameter range
0 - 0xFFFF

Default
0x3332

C8 command
Sets or displays the operational compatibility with the Legacy 802.15.4 device (S1 hardware). This
parameter should only be set when operating in a mixed network that contains XBee Series 1 devices.

Parameter range
0 - 3
Bit field:

AT commands Network and security commands

Digi XBee3® 802.15.4 RF Module User Guide 122

Bit Meaning Setting Description

01 TX
compatibility

0 Transmissions are optimized as follows:

1. Maximum transmission size is affected by multiple factors (MM,
MY, DH, DL, and EE). See Maximum payload rules. In the best
case, with no app header, short source and destination
addresses, and no encryption, the maximum transmission size
is 116 bytes.

2. Multiple messages can be present simultaneously on the active
queue, providing they are all destined for different addresses.
This improves performance.

1 Transmissions operate like the Legacy 802.15.4 module, which means
the following:

1. Maximum transmission size is 95 bytes for encrypted packets
and 100 bytes for un-encrypted packets. These maximum
transmission sizes are not adjusted upward for short
addresses or for lack of an APP header.

2. Only one transmission message can be active at a time, even if
other messages in the queue would go to a different
destination address.

1 Node
Discovery
compatibility

0 Node discovery operates like other XBee devices and not like the
Legacy 802.15.4 module. This means the following:

1. A directedND request terminates after the single response
arrives. This allows the device to process other commands
without waiting for the NT to time out.

2. The device outputs an error response to the directedND
request if no response occurs within the time out.

1 The module operates like the Legacy 802.15.4 module, which has the
following effect:

1. When the expected response arrives, the command remains
active untilNT times out. (NT defaults to 2.5 seconds.) This
prevents the device from processing any other AT command,
even if the desired response occurs immediately.

2. When the timeout occurs, the command silently terminates and
indicates success, whether or not a response occurred within
the NT timeout.

Default
0

1This bit does not typically need to be set. However, when the XBee3 802.15.4 RF Module is streaming
broadcasts in transparent mode to a Legacy 802.15.4 module (S1 hardware), and RR > 0, set this bit to avoid a
watchdog reset on the Legacy 802.15.4 module.

AT commands Network and security commands

Digi XBee3® 802.15.4 RF Module User Guide 123

NI (Node Identifier)
Stores the node identifier string for a device, which is a user-defined name or description of the
device. This can be up to 20 ASCII characters.
Use the ND (Network Discovery) command with this string as an argument to easily identify devices
on the network.
The DN command also uses this identifier.

Parameter range
A string of case-sensitive ASCII printable characters from 1 to 20 bytes in length. A carriage return
or a comma automatically ends the command.

Default
0x20 (an ASCII space character)

ND (Network Discover)
This command reports the following information after a jittered time delay. Node discover response
when issued in Commandmode:

MY<CR> (2 bytes) (always 0xFFFE)
SH<CR> (4 bytes)
SL<CR> (4 bytes)
DB<CR> (Contains the detected signal strength of the response in negative dBm units)
NI <CR> (variable, 0-20 bytes plus 0x00 character)
PARENT_NETWORK ADDRESS<CR> (2 bytes)
DEVICE_TYPE<CR> (1 byte: 0 = Coordinator, 1 = Router, 2 = End Device)
STATUS<CR> (1 byte: reserved)
PROFILE_ID<CR> (2 bytes)
MANUFACTURER_ID<CR> (2 bytes)
DIGI DEVICE TYPE<CR> (4 bytes. Optionally included based on NO settings.)
RSSI OF LAST HOP<CR> (1 byte. Optionally included based on NO settings.)

A second carriage return indicates the network discovery timeout (NT) has expired.
When operating in API mode and a Network Discovery is issued as a 0x08 or 0x09 frame, the response
contains binary data except for the NI string in the following format:

2 bytes for Short Source Address
4 bytes for Upper Long Address
4 bytes for Lower Long Address
1 byte for the signal strength in -dBm (two's complement representation)
NULL-terminated string for NI (Node Identifier) value (maximum 20 bytes without NULL
terminator)

Each device that responds to the request will generate a separate AT Command Response frame -
0x88.
Broadcast an ND command to the network. If the command includes an optional node identifier string
parameter, only those devices with a matching NI string respond without a random offset delay. If the
command does not include a node identifier string parameter, all devices respond with a random
offset delay.

AT commands Network and security commands

Digi XBee3® 802.15.4 RF Module User Guide 124

The NT setting determines the maximum timeout (13 seconds by default), this value is sent along with
the discovery broadcast and determines the random delay the remote nodes use to prevent the
responses from colliding.
For more information about the options that affect the behavior of the ND command, see NO (Node
Discovery Options).

WARNING! If the NT setting is small relative to the number of devices on the network,
responses may be lost due to channel congestion. Regardless of the NT setting, because
the random offset only mitigates transmission collisions, getting responses from all devices
in the network is not guaranteed.

Parameter range
20-byte printable ASCII string

Default
N/A

DN (Discover Node)
Resolves an NI (Node identifier) string to a physical address (case sensitive).
The following events occur after DN discovers the destination node:
When DN is sent in Commandmode:

1. The device sets DL and DH to the address of the device with the matching NI string.
2. The receiving device returns OK (or ERROR).
3. The device exits Commandmode to allow for immediate communication. If an ERROR is

received, then Commandmode does not exit.

When DN is sent as a local AT Command API frame:

1. The receiving device returns the 16-bit network and 64-bit extended addresses in an API
Command Response frame.

2. If there is no response from a module within (NT* 100) milliseconds or you do not specify a
parameter (by leaving it blank), the receiving device returns an ERROR message. In the case of
an ERROR, the device does not exit Commandmode. Set the radius of the DN command using
the BH command.

When DN is sent as a local AT Command Frame - 0x08:

1. The receiving device returns a success response in a AT Command Response frame - 0x88.
2. If there is no response from a module within (NT * 100) milliseconds or you do not specify a

parameter (by leaving it blank), the receiving device returns an ERROR message.

Parameter range
20-byte ASCII string

Default
N/A

AT commands Network and security commands

Digi XBee3® 802.15.4 RF Module User Guide 125

NT (Node Discover Timeout)
Sets or displays the amount of time a base node waits for responses from other nodes when using the
ND (Node Discover) command. The NT value is transmitted along with the ND command; remote
nodes set up a random hold-off time based on this timeout. Once the ND command has ended, the
base discards any responses it receives.

Parameter range
0x1 - 0xFC (x 100 ms)

Default
0x19 (2.5 seconds)

NO (Node Discovery Options)
Use NO to suppress or include a self-response to ND (Node Discover) commands. When NO bit 1 is set,
a device performing a Node Discover includes a response entry for itself.

Parameter range
0 - 1

Default
0x0

MM (MAC Mode)
Use the MM command to specify the operating MAC Mode; for more information see MAC Mode
configuration.
The MAC Mode serves two purposes:

n Enable/disable the use of a Digi header, which enables advanced features.
n Enable/disable MAC-Layer acknowledgments.

The default configuration enables a Digi-specific header to every RF packet. This header includes
information that allows for some advanced features:

n Network discovery support [ND (Network Discover) and DN (Discover Node)]
n Application-layer retries [RR (XBee Retries)]
n Duplicate packet detection [RR (XBee Retries)]
n Remote AT command support [Remote AT Command Request frame - 0x17]

The presence of the Digi header prevents interoperability with third-party devices. When the Digi
header is disabled, encrypted data that is not valid is sent out of the UART and not filtered out. The
Digi header can be disabled by setting MM to 1 or 2.
WhenMM is set 1 or 3, MAC-layer retries are disabled.

Parameter range
0 - 3

AT commands Coordinator/End Device configuration commands

Digi XBee3® 802.15.4 RF Module User Guide 126

Parameter Configuration ACKs

0 Digi mode With ACKs

1 802.15.4 No ACKs

2 802.15.4 With ACKs

3 Digi mode No ACKs

Default
0

NP (Maximum Packet Payload Bytes)
Reads the maximum number of RF payload bytes that you can send in a transmission.
NP is based onmultiple factors including the length of the source address, the length of the
destination address, the length of the APP header, and whether or not encryption is enabled.
For the purposes of this command, it always assumes a long destination address. This means that if
you select a short destination address, you will be able to send up to NP + 6 bytes in a single packet.

Note NP returns a hexadecimal value. For example, if NP returns 0x66, this is equivalent to 102 bytes.

Parameter range
[read-only]

Default
N/A

Coordinator/End Device configuration commands
The following commands configure the device for a master/slave 802.15.4 network.

CE (Coordinator Enable)
The routing mode of the XBee3 802.15.4 RF Module.
The XBee3 802.15.4 RF Module does not allow association until bit 2 of A2 (Coordinator Association) is
set.

Parameter range
0 - 1

Parameter Description

0 End Device

1 Coordinator

Default
0

AT commands Coordinator/End Device configuration commands

Digi XBee3® 802.15.4 RF Module User Guide 127

Note If CE = 1 and SP is not 0, then all messages are sent indirectly. See Direct and indirect
transmission for more information.

A1 (End Device Association)
Sets or displays the End Device association options.

Parameter range
0 - 0x0F (bit field)
Bit field:

Bit Meaning Setting Description

0 Allow PanId
reassignment

0 Only associates with Coordinator operating on PAN ID that
matches device ID.

1 May associate with Coordinator operating on any PAN ID.

1 Allow Channel
reassignment

0 Only associates with Coordinator operating onmatching CH
channel setting.

1 May associate with Coordinator operating on any channel.

2 Auto Associate 0 Device will not attempt association.

1 Device attempts association until success.

3 Poll coordinator on pin
wake

0 Pin Wake does not poll the Coordinator for indirect (pending)
data.

1 Pin Wake sends Poll Request to Coordinator to extract any
pending data.

4 -
7

Reserved

Default
0

A2 (Coordinator Association)
Sets or displays the Coordinator association options. These options are only applicable when
configured as a coordinator by setting CE (Coordinator Enable) to 1.

Parameter range
0 - 7 (bit field)
Bit field:

AT commands Coordinator/End Device configuration commands

Digi XBee3® 802.15.4 RF Module User Guide 128

Bit Meaning Setting Description

0 Allow Pan ID
reassignment

0 Coordinator will not perform Active Scan to locate available PAN ID. It
operates on ID (PAN ID).

1 Coordinator performs an Active Scan to determine an available ID
(PAN ID). If a PAN ID conflict is found, the ID parameter will change.

1 Allow
Channel
reassignment

0 Coordinator will not perform Energy Scan to determine free channel.
It operates on the channel determined by the CH parameter.

1 Coordinator performs an Energy Scan to find the quietest channel out
of the channels to be scanned determined by the SC parameter. The
Coordinator then operates on that channel.

2 Allow
Association

0 Coordinator will not allow any devices to associate to it.

1 Coordinator allows devices to associate to it.

3 -
7

Reserved

Default
0

SC (Scan Channels)
Sets or displays the list of channels to scan for all Active and Energy Scans as a bit field. This affects
scans initiated in AS (Active Scan) and ED (Energy Detect) commands in Commandmode and during
End Device Association and Coordinator startup.

Parameter range
1 - 0xFFFF (bit field)

Note A parameter of 0 automatically scans the current channel configured by CH.

Bit field mask:

Bit IEEE 802.15.4 channel

0 Channel 11 (0x0B)

1 Channel 12 (0x0C)

2 Channel 13 (0x0D)

3 Channel 14 (0x0E)

4 Channel 15 (0x0F)

5 Channel 16 (0x10)

6 Channel 17 (0x11)

AT commands Coordinator/End Device configuration commands

Digi XBee3® 802.15.4 RF Module User Guide 129

Bit IEEE 802.15.4 channel

7 Channel 18 (0x12)

8 Channel 19 (0x13)

9 Channel 20 (0x14)

10 Channel 21 (0x15)

11 Channel 22 (0x16)

12 Channel 23 (0x17)

13 Channel 24 (0x18)

14 Channel 25 (0x19)

15 Channel 26 (0x1A)

Default
0xFFFF

DA (Force Disassociation)
Causes the End Device to immediately disassociate from a Coordinator (if associated) and re-attempt
to associate.

Parameter range
N/A

Default
N/A

AI (Association Indication)
Reads the Association status code to monitor association progress.
The following table provides the status codes and their meanings.

Status
code Meaning

0x00 Coordinator successfully started, End device successfully associated, or operating in peer
to peer mode where no association is needed.

0x03 Active Scan found a PAN coordinator, but it isn't currently accepting associations.

0x05 Active Scan found a PAN, but the PAN ID doesn't match the configured PAN ID on the
requesting end device and bit 0 of A1 is not set to allow reassignment of PAN ID.

0x06 Active Scan found a PAN on a channel that does not match the configured channel on the
requesting end device and bit 1 of A1 is not set to allow reassignment of the channel.

0x0C Association request failed to get a response.

AT commands 802.15.4 Addressing commands

Digi XBee3® 802.15.4 RF Module User Guide 130

Status
code Meaning

0x13 End device is disassociated or is in the process of disassociating.

0xFF Initialization time; no association status has been determined yet.

Parameter range
0 - 0xFF [read-only]

Default
N/A

802.15.4 Addressing commands
The following commands affect the source and destination addressing for the device.

SH (Serial Number High)
Displays the upper 32 bits of the unique IEEE 64-bit extended address assigned to the XBee in the
factory.
The 64-bit source address is always enabled. This value is read-only and it never changes.

Parameter range
0x0013A200 - 0x0013A2FF [read-only]

Default
Set in the factory

SL (Serial Number Low)
Displays the lower 32 bits of the unique IEEE 64-bit RF extended address assigned to the XBee in the
factory.
The device's serial number is set at the factory and is read-only.

Parameter range
0 - 0xFFFFFFFF [read-only]

Default
Set in the factory

MY (16-bit Source Address)
Sets or displays the device's 16-bit source address. Set MY = 0xFFFE to disable reception of packets
with 16-bit addresses. To maintain compatibility with older products, 0xFFFF is also acceptable to
disable the reception of packets with 16-bit addresses. When configured in this way, the 64-bit long
source address (SH+SL) is used for outgoing messages.
Regardless of MY, messages addressed to the 64-bit long address of the device are always delivered.

AT commands 802.15.4 Addressing commands

Digi XBee3® 802.15.4 RF Module User Guide 131

Parameter range
0 - 0xFFFF

Default
0

DH (Destination Address High)
Set or read the upper 32 bits of the 64-bit destination address. When you combine DH with DL, it
defines the destination address that the device uses for transmissions in Transparent mode.
This destination address is also used for outgoing I/O samples in both Transparent and API modes.
To transmit using a 16-bit address, set DH to 0 and DL less than 0xFFFF.
0x000000000000FFFF is the broadcast address (DH = 0, DL = 0xFFFF).

Parameter range
0 - 0xFFFFFFFF

Default
0

DL (Destination Address Low)
Set or display the lower 32 bits of the 64-bit destination address. When you combine DH with DL, it
defines the destination address that the device uses for transmissions in Transparent mode. This
destination address is also used for outgoing I/O samples in both Transparent and API modes.
0x000000000000FFFF is the broadcast address (DH = 0, DL = 0xFFFF).

Parameter range
0 - 0xFFFFFFFF

Default
0

RR (XBee Retries)
Set or reads the number of application-layer retries the device executes. Application-layer retries are
only enabled if a Digi header is present via the MM command.
Every transmitted unicast transmission uses up to five MAC-Layer retries (if enabled via the MM
command). If RR > 0, a failed unicast transmission will be attempted RR times (each application-layer
retry will exhaust the five MAC-layer retries).
When transmitting a broadcast message, if RR = 0, only one packet is broadcast. If RR is > 0, then RR +
2 packets are sent on each broadcast. No acknowledgments are returned on a broadcast.
The RR value does not need to be set on all devices for retries to work. If retries are enabled, the
transmitting device sets a bit in the Digi RF Packet header that requests the receiving device to send
an ACK. Each device retry can potentially result in the MAC sending the packet six times (one try plus
five retries).

Parameter range
0 - 6

AT commands Security commands

Digi XBee3® 802.15.4 RF Module User Guide 132

Default
0

TO (Transmit Options)
Set/read transmit options for Transparent mode.

Bit Meaning

0 Disable MAC ACKs.

2 Send to broadcast PAN ID.

Parameter range
0 - 5

Default
0

Security commands
The following commands enable and control the encryption used for RF transmissions.

EE (Encryption Enable)
Enables or disables 128-bit Advanced Encryption Standard (AES) encryption of RD data transmissions.
The firmware uses the 802.15.4 Default Security protocol and uses AES encryption with a 128-bit key.
AES encryption dictates that all devices in the network use the same key, and that the maximum RF
packet size is 95 bytes if Tx compatibility is enabled (you set bit 0 of C8). If C8, bit 0 is not set, see
Maximum payload.
When encryption is enabled, the device always uses its 64-bit long address as the source address for
RF packets. This does not affect how the MY (Source Address), DH (Destination Address High) and DL
(Destination Address Low) parameters work.
If MM (MAC Mode) is set to 1 or 2 and AP (API Enable) parameter > 0:

With encryption enabled and a 16-bit short address set, receiving devices can only issue RX
(Receive) 64-bit indicators. This is not an issue whenMM = 0 or 3.

If a device with a non-matching key detects RF data, but has an incorrect key:
When encryption is enabled, non-encrypted RF packets received are rejected and are not sent
out the UART.

Parameter range
0 - 1

Parameter Description

0 Encryption Disabled

1 Encryption Enabled

AT commands Security commands

Digi XBee3® 802.15.4 RF Module User Guide 133

Default
0

KY (AES Encryption Key)
Sets the 128-bit network security key value that the device uses for encryption and decryption.
This command is write-only and cannot be read. If you attempt to read KY, the device returns anOK
status.
Set this command parameter the same on all devices in a network.
The entire payload of the packet is encrypted using the key and the CRC is computed across the
ciphertext.

Parameter range
128-bit value (up to 16 bytes)

Default
0

FK (File System Public Key)
Configures the device's File System Public Key.
The 65-byte public key is required to verify that the file system that is downloaded over-the-air is a
valid XBee3 file system compatible with the 802.15.4 firmware.
For further information, refer to Set the public key on the XBee3 device.

Parameter range
A valid 65-byte ECDSA public key.
Other accepted parameters:
0 = Clear the public key
1 = Returns the upper 48 bytes of the public key
2 = Returns the lower 17 bytes of the public key

Default
0

Note The Default value of 0 indicates that no public key has been set and hence, all file system
updates will be rejected.

DM (Disable Features)
A bit field mask that you can use to enable or disable specific features.

Bit Description

0 Reserved

1 Reserved

AT commands RF interfacing commands

Digi XBee3® 802.15.4 RF Module User Guide 134

Bit Description

2 Disable OTA firmware
When set to 1, the device cannot act as an OTA update client. OTA File System updates are with
FK (File System Public Key).

Note Serial firmware updates are always possible via the bootloader.

Parameter range
0, 4 (bit field)

Default
0

RF interfacing commands
The following AT commands affect the RF interface of the device.

PL (TX Power Level)
Sets or displays the power level at which the device transmits conducted power.

Note If operating on channel 26 (CH = 0x1A), output power will be capped and cannot exceed 8 dBm
regardless of the PL setting.

Parameter range
0 - 4
The following table shows the TX power versus the PL setting.

PL setting XBee3 TX power XBee3-PRO TX power

4 8 dBm 19 dBm

3 5 dBm 15 dBm

2 2 dBm 8 dBm

1 -1 dBm 3 dBm

0 -5 dBm -5 dBm

Default
4

PP (Output Power in dBm)
Display the operating output power based on the current configuration (channel and PL setting). The
values returned are in dBm, with negative values represented in two's complement; for example:
-5 dBm = 0xFB.

AT commands RF interfacing commands

Digi XBee3® 802.15.4 RF Module User Guide 135

Parameter range
0 - 0xFF [read-only]

Default
N/A

CA (CCA Threshold)
Defines the Clear Channel Assessment (CCA) threshold. Prior to transmitting a packet, the device
performs a CCA to detect energy on the channel. If the device detects energy above the CCA
threshold, it will not transmit the packet.
The CA parameter is measured in units of -dBm. The CCA threshold is set upon device initialization,
any change to the CCA threshold must be written to flash with the WR command and the module
reset (power cycle or FR command) before the new threshold is observed.
You can set CA to 0 to disable CCA; this can improve latency but may cause interference with other
2.4GHz devices when transmitting. You can disable and enable CCA at runtime, which does not require
a power cycle.

Parameter range
0 (disabled), 0x28 - 0x64 (-dBm)

Default
0x41

RN (Random Delay Slots)
Defines the minimum value of the back-off exponent in the CSMA-CA algorithm. The Carrier Sense
Multiple Access - Collision Avoidance (CSMA-CA) algorithm was engineered for collision avoidance
(random delays are inserted to prevent data loss caused by data collisions.
If RN = 0, there is no delay between a request to transmit and the first iteration of CSMA-CA.
Unlike CSMA-CD, which reacts to network transmissions after collisions have been detected, CSMA-CA
acts to prevent data collisions before they occur. As soon as a device receives a packet that is to be
transmitted, it checks if the channel is clear (no other device is transmitting). If the channel is clear,
the packet is sent over-the-air. If the channel is not clear, the device waits for a randomly selected
period of time, then checks again to see if the channel is clear. After a time, the process ends and the
data is lost.

Parameter range
0 - 5 (exponent)

Default
0

DB (Last Packet RSSI)
Reports the RSSI in -dBm of the last received RF data packet. DB returns a hexadecimal value for the
-dBmmeasurement.
For example, if DB returns 0x60, then the RSSI of the last packet received was -96 dBm.
If the XBee3 802.15.4 RF Module has been reset and has not yet received a packet, DB reports 0.
This value is volatile (the value does not persist in the device's memory after a power-up sequence).

AT commands MAC diagnostics commands

Digi XBee3® 802.15.4 RF Module User Guide 136

Parameter range
0 - 0xFF [read-only]

Default
N/A

MAC diagnostics commands
The following AT commands are MAC/PHY commands.

AS (Active Scan)
Sends a Beacon Request to a Broadcast address (0xFFFF) and Broadcast PAN (0xFFFF) on every
channel in the scan channel mask—SC (Scan Channels). Active Scan can only be performed locally and
returns an ERROR if attempted remotely.
A PanDescriptor is created and returned for every Beacon received from the scan. Each PanDescriptor
contains the following information:
CoordAddress (SH + SL parameters)<CR>

Note If MY on the coordinator is set less than 0xFFFF, the MY value is displayed.

CoordPanID (ID parameter)<CR>
CoordAddrMode <CR>

0x02 = 16-bit Short Address
0x03 = 64-bit Long Address

Channel (CH parameter) <CR>
SecurityUse<CR>
ACLEntry<CR>
SecurityFailure<CR>
SuperFrameSpec<CR> (2 bytes):

bit 15 - Association Permitted (MSB)
bit 14 - PAN Coordinator
bit 13 - Reserved
bit 12 - Battery Life Extension
bits 8-11 - Final CAP Slot
bits 4-7 - Superframe Order
bits 0-3 - Beacon Order

GtsPermit<CR>
RSSI<CR> (- RSSI is returned as -dBm)
TimeStamp<CR> (3 bytes)
<CR> (A carriage return indicates the end of the PanDescriptor)
The Active Scan returns one PanDescriptor response per discovered network. Each PanDescriptor has
a trailing carriage return <CR> to indicate the end of the frame. The sequence of PanDescriptors has a
final trailing carriage return (3 <CR> in sequence indicate the end of the active scan).
If using API Mode, no <CR>’s are returned and a separate response frame is generated for each
PanDescriptor. For more information, see Operate in API mode.

AT commands MAC diagnostics commands

Digi XBee3® 802.15.4 RF Module User Guide 137

Parameter range
N/A

Default
N/A

ED (Energy Detect)
Starts an energy detect scan. This command accepts an argument to specify the time in milliseconds
to scan all channels. The device loops through all the available channels until the time elapses. It
returns the maximal energy on each channel, a comma follows each value, and the list ends with a
carriage return. The values returned reflect the energy level that ED detects in -dBm units.

Parameter range
N/A

Default
N/A

EA (ACK Failures)
The number of unicast transmissions that time out awaiting a MAC ACK. This can be up to RR +1
timeouts per unicast when RR > 0.
This count increments whenever a MAC ACK timeout occurs on a MAC-level unicast. When the number
reaches 0xFFFF, the firmware does not count further events.
To reset the counter to any 16-bit unsigned value, append a hexadecimal parameter to the command.
This value is volatile (the value does not persist in the device's memory after a power-up sequence).

Parameter range
0 - 0xFFFF

Default
0x0

EC (CCA Failures)
Sets or displays the number of frames that were blocked and not sent due to CCA failures or
receptions in progress. If CCA is disabled (CA is 0), then this count only increments for frames that are
blocked due to receive in progress. When this count reaches its maximum value of 0xFFFF, it stops
counting.
You can reset EC to 0 (or any other value) at any time to make it easier to track errors. This value is
volatile (the value does not persist in the device's memory after a power-up sequence).

Parameter range
0 - 0xFFFF

Default
0x0

AT commands Sleep settings commands

Digi XBee3® 802.15.4 RF Module User Guide 138

Sleep settings commands
The following commands enable and configure the low power sleepmodes of the device.

SM (Sleep Mode)
Sets or displays the sleepmode of the device.
By default, Sleep Modes are disabled (SM = 0) and the device remains in Idle/Receive mode. When in
this state, the device is constantly ready to respond to either serial or RF activity.
When operating in Pin Sleep (SM = 1), D8 (DIO8/DTR/SLP_Request Configuration) must be set as a
peripheral (D8=1) in order for the device to sleep.

Parameter range
0 - 5

Parameter Description

0 No sleep (disabled)

1 Pin sleep

2 Reserved

3 Reserved

4 Cyclic Sleep Remote

5 Cyclic Sleep Remote with pin wakeup

6 MicroPython sleep (with optional pin wake). For complete details see the Digi
MicroPython Programming Guide.

Default
0

SP (Cyclic Sleep Period)
Sets and reads the duration of time that a remote device sleeps. After the cyclic sleep period is over,
the device wakes and checks for data. If data is not present, the device goes back to sleep. The
maximum sleep period is 4 hours (SP = 0x15F900).
The SP parameter is only valid if you configure the end device to operate in Cyclic Sleep (SM = 4-5).
Coordinator and End Device SP values should always be equal.
To send direct messages on a coordinator, set SP = 0. If the device is a coordinator (CE (Coordinator
Enable) = 1) and SP is not 0, the device sends all transmissions indirectly, meaning end devices have to
poll the coordinator to receive data—FP (Force Poll) or using cyclic sleep.
End Device: SP determines the sleep period for cyclic sleeping remotes. The maximum sleep period is
4 hours (0x15F900).
Coordinator: If non-zero, SP determines the time to hold an indirect message before discarding it. A
Coordinator discards indirect messages after a period of (2.5 * SP, or 65 seconds, whichever is
smaller).

https://www.digi.com/resources/documentation/Digidocs/90002219/
https://www.digi.com/resources/documentation/Digidocs/90002219/

AT commands Sleep settings commands

Digi XBee3® 802.15.4 RF Module User Guide 139

Parameter range
0x0 - 0x15F900 (x 10 ms) (4 hours)

Default
0x0

ST (Time before Sleep)
Sets or displays the wake time of the device.
The ST parameter is only valid for end devices configured with Cyclic Sleep settings (SM = 4 - 5) and for
coordinators. Upon waking the device polls for queued indirect messages and UART data. If it does not
detect activity, the device immediately sleeps. The device only stays awake for ST time if RF or UART
activity is detected upon wakeup or bit 8 of SO (Sleep Options) is set to 1.
Coordinator and End Device ST values must be equal.

Parameter range
0x1 - 0x36EE80 (x 1 ms)

Default
0x7D0 (2 seconds)

DP (Disassociated Cyclic Sleep Period)
Sets or displays the sleep period for cyclic sleeping remotes that are configured for Association but
that are not associated to a Coordinator. For example, if a device is configured to associate and is
configured as a Cyclic Sleep remote, but does not find a Coordinator, it sleeps for DP time before
reattempting association.

Parameter range
1 - 0x15F900 (x 10 ms)

Default
0x3E8 (10 seconds)

SO (Sleep Options)
Set or read the sleep options bit field of a device. This command is a bitmask.
You can set or clear any of the available sleep option bits.

Parameter range
0 - 0x103

Bit field:

Bit Setting Meaning Description

0 0 Normal
operations

A device configured for cyclic sleep will poll for data on waking

AT commands UART interface commands

Digi XBee3® 802.15.4 RF Module User Guide 140

Bit Setting Meaning Description

1 Disable wakeup
poll

A device configured for cyclic sleep will not poll for data on waking

1 0 Normal
operations

A device configured in a sleepmode with ADC/DIO sampling enabled
will automatically perform a sampling on wakeup

1 Suppress
sample on
wakeup

A device configured in a sleepmode with ADC/DIO sampling enabled
will not automatically sample on wakeup

8 0 Normal
operations

A device configured for cyclic sleep will wake only momentarily after
the expiration of SP

1 Always wake
for ST time

A device configured for cyclic sleep will always remain awake for ST
time before returning to sleep

Set all other option bits to 0.

Default
0

FP (Force Poll)
The FP command is deferred until changes are applied. This prevents indirect messages from arriving
at the end device while it is operating in Commandmode.

Parameter range
N/A

Default
N/A

UART interface commands
The following commands affect the UART serial interface.

BD (Interface Data Rate)
This command configures the serial interface baud rate for communication between the UART port of
the device and the host. Standard baud rates can be set using a parameter value of 0 - 8.

Non-standard interface data rates
The firmware interprets any value from 0x4B0 through 0x3D090 as an actual baud rate. When the
firmware cannot configure the exact rate specified, it configures the closest approximation to that
rate. For example, to set a rate of 57600 b/s send the following command line: ATBDE100. Then, to
find out the closest approximation, send ATBD to the console window. It sends back a response of
0xE0D1, which is the closest approximation to 57600 b/s attainable by the hardware.

Note When using XCTU, you can only set and read non-standard interface data rates using the XCTU
Terminal tab. You cannot access non-standard rates through the Modem Configuration tab.

AT commands UART interface commands

Digi XBee3® 802.15.4 RF Module User Guide 141

The following table provides some example BD parameters sent versus the parameters stored.

BD parameter sent (HEX) Interface data rate (b/s) BD parameter stored (HEX)

0 1200 (standard) 0

4 19,200 (standard) 4

7 115,200 (standard) 7

E100 57,600 E139

1C200 115,200 1C273

Parameter range
Standard baud rates: 0x0 - 0x0A
Non-standard baud rates: 0x12C - 0x0EC400

Parameter Description

0x0 1200 b/s

0x1 2400 b/s

0x2 4800 b/s

0x3 9600 b/s

0x4 19200 b/s

0x5 38400 b/s

0x6 57600 b/s

0x7 115200 b/s

0x8 230400 b/s

0x9 460,800 b/s

0xA 921,600 b/s

Default
3 (9600 baud)

NB (Parity)
Set or read the serial parity settings for UART communications.
The device does not actually calculate and check the parity. It only interfaces with devices at the
configured parity and stop bit settings for serial error detection.

Parameter range
0 - 2

AT commands UART interface commands

Digi XBee3® 802.15.4 RF Module User Guide 142

Parameter Description

0 No parity

1 Even parity

2 Odd parity

Default
0

SB (Stop Bits)
Sets or displays the number of stop bits for UART communications.

Parameter range
0 - 1

Parameter Configuration

0 One stop bit

1 Two stop bits

Default
0

FT command
Set or display the flow control threshold.
The device de-asserts CTS when FT bytes are in the UART receive buffer. It re-asserts CTS when less
than FT bytes are in the UART receive buffer.

Parameter range
0x20 - 0x1B0 bytes

Default
0x158

RO (Packetization Timeout)
Set or read the number of character times of inter-character silence required before transmission
begins when operating in Transparent mode.
Set RO to 0 to transmit characters as they arrive instead of buffering them into one RF packet.
The RO command only applies to Transparent mode, it does not apply to API mode.

Parameter range
0 - 0xFF (x character times)

Default
3

AT commands UART interface commands

Digi XBee3® 802.15.4 RF Module User Guide 143

AP (API Enable)
Set or read the API mode setting. The device can format the RF packets it receives into API frames
and sends them out the serial port.
For more information, see Serial modes.
When you enable API, you must format the serial data as API frames because Transparent operating
mode is disabled.

Parameter range
0 - 2

Parameter Description

0 API disabled (operate in Transparent mode)

1 API enabled

2 API enabled (with escaped control characters)

Default
0

AO (API Output Options)
The API data frame output format for RF packets received.
Use AO to enable different API output frames.

Parameter range
0 - 2

Parameter Description

0 API Rx Indicator - 0x90, this is for standard data frames.

1 API Explicit Rx Indicator - 0x91, this is for Explicit Addressing data frames.

2 Legacy 802.15.4 API Indicator - 0x80/0x81. Also restricts the Digital Input sampling to
D0 through D8 and allows for OTA compatibility with legacy S1 and S2C devices.

Default
2

AZ (Extended API Options)
Optionally output additional ZCLmessages that would normally be masked by the XBee application.
Use this when debugging OTA firmware updates by enabling client-side messages to be sent out of
the serial port.

Parameter range
0 - 2

AT commands Command mode options

Digi XBee3® 802.15.4 RF Module User Guide 144

Parameter Description

0 Suppress ZCL output

1 Reserved

2 Output supported ZCL packets

Default
0

Command mode options
The following commands affect how Commandmode operates.

CC (Command Character)
The character value the device uses to enter Commandmode.
The default value (0x2B) is the ASCII code for the plus (+) character. You must enter it three times
within the guard time to enter Commandmode. To enter Commandmode, there is also a required
period of silence before and after the command sequence characters of the Commandmode
sequence (GT + CC + GT). The period of silence prevents inadvertently entering Commandmode. For
more information, see Enter Commandmode.

Parameter range
0 - 0xFF

Default
0x2B (the ASCII plus character: +)

CT (Command Mode Timeout)
Sets or displays the Commandmode timeout parameter. If a device does not receive any valid
commands within this time period, it returns to Idle mode from Commandmode.

Parameter range
2 - 0x1770 (x 100 ms)

Default
0x64 (10 seconds)

GT (Guard Times)
Set the required period of silence before and after the command sequence characters of the
Commandmode sequence, GT + CC + GT (including spaces). The period of silence prevents
inadvertently entering Commandmode. For more information, see Enter Commandmode.

Parameter range
0x2 - 0x6D3 (x 1 ms)

AT commands UART pin configuration commands

Digi XBee3® 802.15.4 RF Module User Guide 145

Default
0x3E8 (one second)

CN (Exit Command mode)
Executable command. CN immediately exits Commandmode and applies pending changes.

Parameter range
N/A

Default
N/A

UART pin configuration commands
The following commands are related to pin configuration for the UART interface.

D6 (DIO6/RTS Configuration)
Sets or displays the DIO6/RTS configuration (Micro pin 27/SMT pin 29/TH pin 16).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

1 RTS flow control

2 N/A

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

D7 (DIO7/CTS Configuration)
Sets or displays the DIO7/CTS configuration (Micro pin 24/SMT pin 25/TH pin 12).

Parameter range
0, 1, 3 - 7

AT commands UART pin configuration commands

Digi XBee3® 802.15.4 RF Module User Guide 146

Parameter Description

0 Disabled

1 CTS flow control

2 N/A

3 Digital input

4 Digital output, low

5 Digital output, high

6 RS-485 enable, low Tx (0 V on transmit, high when idle)

7 RS-485 enable, high Tx (high on transmit, 0 V when idle)

Default
1

P3 (DIO13/UART_DOUT Configuration)
Sets or displays the DIO13/UART_DOUT configuration (Micro pin 3/SMT pin 3/TH pin 2).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

1 UART DOUT

2 N/A

3 Digital input

4 Digital output, low

5 Digital output, high

Default
1

P4 (DIO14/UART_DIN Configuration)
Sets or displays the DIO14/UART_DIN configuration (Micro pin 4/SMT pin 4/TH pin 3).

Parameter range
0, 1, 3 - 5

AT commands SPI interface commands

Digi XBee3® 802.15.4 RF Module User Guide 147

Parameter Description

0 Disabled

1 UART DIN

2 N/A

3 Digital input

4 Digital output, low

5 Digital output, high

Default
1

SPI interface commands
The following commands affect the SPI serial interface on SMT and MMT variants. These commands
are not applicable to the through-hole variant of the XBee3; see D1 through D4 and P2 for through-
hole SPI support.

P5 (DIO15/SPI_MISO Configuration)
Sets or displays the DIO15/SPI_MISO configuration (Micro pin 16/SMT pin 17). This only applies to
surface-mount andmicro devices.

Parameter range
0, 1, 4, 5

Parameter Description

0 Disabled

1 SPI_MISO

2 N/A

3 N/A

4 Digital output, low

5 Digital output, high

Default
1

P6 (DIO16/SPI_MOSI Configuration)
Sets or displays the DIO16/SPI_MOSI configuration (Micro pin 15/SMT pin 16). This only applies to
surface-mount andmicro devices.

AT commands SPI interface commands

Digi XBee3® 802.15.4 RF Module User Guide 148

Parameter range
0, 1, 4, 5

Parameter Description

0 Disabled

1 SPI_MOSI

2 N/A

3 N/A

4 Digital output, low

5 Digital output, high

Default
1

P7 (DIO17/SPI_SSEL Configuration)
Sets or displays the DIO17/SPI_SSEL configuration (Micro pin 14/SMT pin 15). This only applies to
surface-mount andmicro devices.

Parameter range
0 - 1, 4, 5

Parameter Description

0 Disabled

1 SPI_SSEL

2 N/A

3 N/A

4 Digital output, low

5 Digital output, high

Default
1

P8 (DIO18/SPI_CLK Configuration)
Sets or displays the DIO18/SPI_CLK configuration (Micro pin 13/SMT pin 14). This only applies to
surface-mount andmicro devices.

Parameter range
0, 1, 4, 5

AT commands I/O settings commands

Digi XBee3® 802.15.4 RF Module User Guide 149

Parameter Description

0 Disabled

1 SPI_CLK

2 N/A

3 N/A

4 Digital output, low

5 Digital output, high

Default
1

P9 (DIO19/SPI_ATTN Configuration)
Sets or displays the DIO19/SPI_ATTN configuration (Micro pin 11/SMT pin 12). This only applies to
surface-mount andmicro devices.

Parameter range
0, 1, 4, 5

Parameter Description

0 Disabled

1 SPI_ATTN

2 N/A

3 N/A

4 Digital output, low

5 Digital output, high

Default
1

I/O settings commands
The following commands configure the various I/O lines available on the XBee3 802.15.4 RF Module.

D0 (DIO0/ADC0/Commissioning Configuration)
Sets or displays the DIO0/ADC0/CB configuration (TH pin 20/SMT pin 33).

Parameter range
0 - 5

AT commands I/O settings commands

Digi XBee3® 802.15.4 RF Module User Guide 150

Parameter Description

0 Disabled

1 Commissioning Pushbutton

2 ADC

3 Digital input

4 Digital output, low

5 Digital output, high

Default
1

CB (Commissioning Button)
Use CB to simulate Commissioning Pushbutton presses in software.
You can enable a physical commissioning pushbutton with D0 (DIO0/ADC0/Commissioning
Configuration).
Set the parameter value to the number of button presses that you want to simulate. For example,
send CB1 to perform the action of pressing the Commissioning Pushbutton once.

Parameter range
1, 4

Parameter Description

1 Keeps device awake for 30 seconds.

4 Restore defaults (equivalent to sending an RE (Restore Defaults)).

Default
N/A

D1 (DIO1/ADC1/TH_SPI_ATTN Configuration)
Sets or displays the DIO1/ADC1/TH_SPI_ATTN configuration (Micro pin 30/SMT pin 32/TH pin 19).

Parameter range
SMT/MMT: 0, 2 - 5
TH: 0 - 5

Parameter Description

0 Disabled

1 SPI_ATTN for the through-hole device
N/A for surface-mount device

AT commands I/O settings commands

Digi XBee3® 802.15.4 RF Module User Guide 151

Parameter Description

2 ADC

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

D2 (DIO2/ADC2/TH_SPI_CLK Configuration)
Sets or displays the DIO2/ADC2/TH_SPI_CLK configuration (Micro pin 29/SMT pin 31/TH pin 18).

Parameter range
SMT/MMT: 0, 2 - 5
TH: 0 - 5

Parameter Description

0 Disabled

1 SPI_CLK for through-hole devices
N/A for surface-mount devices

2 ADC

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

D3 (DIO3/ADC3/TH_SPI_SSEL Configuration)
Sets or displays the DIO3/ADC3/TH_SPI_SSEL configuration (Micro pin 28/SMT pin 30/TH pin 17).

Parameter range
SMT/MMT: 0, 2 - 5
TH: 0 - 5

Parameter Description

0 Disabled

AT commands I/O settings commands

Digi XBee3® 802.15.4 RF Module User Guide 152

Parameter Description

1 SPI_SSEL for the through-hole device
N/A for surface-mount device

2 ADC

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

D4 (DIO4/TH_SPI_MOSI Configuration)
Sets or displays the DIO4/TH_SPI_MOSI configuration (Micro pin 23/SMT pin 24/TH pin 11).

Parameter range
SMT/MMT: 0, 3 - 5
TH: 0, 1, 3 - 5

Parameter Description

0 Disabled

1 SPI_MOSI for the through-hole device
N/A for the surface-mount andmicro device

2 N/A

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

D5 (DIO5/Associate Configuration)
Sets or displays the DIO5/ASSOCIATED_INDICATOR configuration (Micro pin 26/SMT pin 28/TH pin 15).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

AT commands I/O settings commands

Digi XBee3® 802.15.4 RF Module User Guide 153

Parameter Description

1 Associate LED indicator - blinks when associated

2 N/A

3 Digital input

4 Digital output, default low

5 Digital output, default high

Default
1

D8 (DIO8/DTR/SLP_Request Configuration)
Sets or displays the DIO8/DTR/SLP_RQ configuration (Micro pin 9/SMT pin 10/TH pin 9).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

1 DTR/Sleep_Request (used with pin sleep and cyclic sleep with pin wake)

2 N/A

3 Digital input

4 Digital output, low

5 Digital output, high

Default
1

D9 (DIO9/ON_SLEEP Configuration)
Sets or displays the DIO9/ON_SLEEP configuration (Micro pin 25/SMT pin 26/TH pin 13).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

1 ON/SLEEP indicator

2 N/A

AT commands I/O settings commands

Digi XBee3® 802.15.4 RF Module User Guide 154

Parameter Description

3 Digital input

4 Digital output, low

5 Digital output, high

Default
1

P0 (DIO10/RSSI/PWM0 Configuration)
Sets or displays the DIO10/RSSI/PWM0 configuration (Micro pin 7/SMT pin 7/TH pin 6).
When configured as RSSI PWM output, the device outputs a PWM signal with a duty cycle equivalent to
the dBm of the received packet.
Use RP (RSSI PWM Timer) to configure the timeout.
When configured as PWM output (2): you can use M0 to explicitly control the PWM0 output. When used
with Analog line passing, PWM0 corresponds with ADC0.

Parameter range
0 - 5

Parameter Description

0 Disabled

1 RSSI PWM output

2 PWM0 output. M0 (PWM0 Duty Cycle) or I/O line passing control the value.

3 Digital input

4 Digital output, low

5 Digital output, high

Default
1

P1 (DIO11/PWM1 Configuration)
Sets or displays the DIO11/PWM1 configuration (Micro pin 8/SMT pin 8/TH pin 7).
When configured as PWM output (2): you can use M1 to explicitly control the PWM1 output. When used
with Analog line passing, PWM corresponds with ADC1.

Parameter range
0, 2 - 5

AT commands I/O settings commands

Digi XBee3® 802.15.4 RF Module User Guide 155

Parameter Description

0 Disabled

1 N/A

2 PWM1 output. M1 (PWM1 Duty Cycle) or I/O line passing control the value.

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

P2 (DIO12/TH_SPI_MISO Configuration)
Sets or displays the DIO12/TH_SPI_MISO configuration (Micro pin 5/SMT pin 5/TH pin 4).

Parameter range
SMT/MMT: 0, 3 - 5
TH: 0, 1, 3 - 5

Parameter Description

0 Disabled

1 SPI_MISO for the through-hole device
N/A for the surface-mount andmicro device

2 N/A

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

PR (Pull-up/Down Resistor Enable)
The bit field that configures the internal pull-up/down resistor status for the I/O lines.

n If you set a PR bit to 1, it enables the pull-up/down resistor
n If you set a PR bit to 0, it specifies no internal pull-up/down resistor.

The PD (Pull Direction) parameter determines the direction of the internal pull-up/down resistor.
PR and PD only affect lines that are configured as digital inputs (3) or disabled (0).
By default, pull-up resistors are enabled on all disabled I/O lines.
The following table defines the bit-field map for PR and PD commands.

AT commands I/O settings commands

Digi XBee3® 802.15.4 RF Module User Guide 156

Bit I/O line Micro pin Surface-mount pin Through-hole pin

0 DIO4 23 24 11

1 DIO3 28 30 17

2 DIO2 29 31 18

3 DIO1 30 32 19

4 DIO0 31 33 20

5 DIO6 27 29 16

6 DIO8 9 10 9

7 DIO14 4 4 3

8 DIO5 26 28 15

9 DIO9 25 26 13

10 DIO12 5 5 4

11 DIO10 7 7 6

12 DIO11 8 8 7

13 DIO7 24 25 12

14 DIO13 3 3 2

15 DIO15 16 17 N/A

16 DIO16 15 16 N/A

17 DIO17 14 15 N/A

18 DIO18 13 14 N/A

19 DIO19 11 12 N/A

Parameter range
Through-hole: 0 - 0xFFFF
SMT/MMT: 0 - 0xFFFFF

Default
0xFFFF

Example
Sending the command ATPR 6F turn bits 0, 1, 2, 3, 5 and 6 ON, and bits 4 and 7 OFF. The binary
equivalent of 0x6F is 01101111. Bit 0 is the right-most digit in the binary bit field.

PD (Pull Up/Down Direction)
See PR (Pull-up/Down Resistor Enable) for the bit mappings.

Parameter range
Through-hole: 0 - 0xFFFF

AT commands I/O settings commands

Digi XBee3® 802.15.4 RF Module User Guide 157

SMT/MMT: 0 - 0xFFFFF

Default
0xFFFF

M0 (PWM0 Duty Cycle)
The duty cycle of the PWM0 line (Micro pin 7/SMT pin 7).
If IA (I/O Input Address) is set correctly and P0 (DIO10/RSSI/PWM0 Configuration) is configured as
PWM0 output, incoming AD0 samples automatically modify the PWM0 value. See PT (PWM Output
Timeout).
To configure the duty cycle of PWM0:

1. Enable PWM0 output (P0 = 2).
2. Change M0 to the desired value.
3. Apply settings (use CN or AC).

The PWM period is 64 µs and there are 0x03FF (1023 decimal) steps within this period. WhenM0 = 0
(0% PWM), 0x01FF (50% PWM), 0x03FF (100% PWM), and so forth.

Parameter range
0 - 0x3FF

Default
0

M1 (PWM1 Duty Cycle)
If IA (I/O Input Address) is set correctly and P1 (DIO11/PWM1 Configuration) is configured as PWM1
output, incoming AD0 samples automatically modify the PWM1 value. See PT (PWM Output Timeout).
To configure the duty cycle of PWM1:

1. Enable PWM1 output (P1 = 2).
2. Change M1 to the desired value.
3. Apply settings (use CN or AC).

The PWM period is 64 µs and there are 0x03FF (1023 decimal) steps within this period. WhenM1 = 0
(0% PWM), 0x01FF (50% PWM), 0x03FF (100% PWM), and so forth.

Parameter range
0 - 0x3FF

Default
0

RP (RSSI PWM Timer)
The PWM timer expiration in 0.1 seconds. RP sets the duration of pulse width modulation (PWM) signal
output on the RSSI pin. The pin signal duty cycle updates with each received packet and shuts off
when the timer expires. This command is only applicable when P0 is set to 1 which enables RSSI PWM
output.

AT commands I/O sampling commands

Digi XBee3® 802.15.4 RF Module User Guide 158

When RP = 0xFF, the output is always on.

Parameter range
0 - 0xFF (x 100 ms), 0xFF

Default
0x28 (four seconds)

LT command
Set or read the Associate LED blink time. If you use D5 (DIO5/Associate Configuration) to enable the
Associate LED functionality (DIO5/Associate pin), this value determines the on and off blink times for
the LED when the device has joined the network.
If LT = 0, the device uses the default blink rate: 500 ms for a sleep coordinator, 250 ms for all other
nodes.

Parameter range
0, 0x14 - 0xFF (x 10 ms)

Default
0

I/O sampling commands
The following commands configure I/O sampling on an originating device. Any I/O sample generated
by this device is sent to the address specified by DH and DL. You must configure at least one I/O line as
an input or output for a sample to be generated.

IS (I/O Sample)
Immediately forces an I/O sample to be generated for the digital and analog I/O lines that are
configured for the local device. If you issue the command to the local device, the sample data is sent
out the local serial interface. If sent remotely, the sample is taken on the destination and the sample
data is returned as an AT Command Response frame - 0x88.
If the device receives ERROR as a response to an IS query, there are no valid I/O lines to sample.
Refer to On-demand sampling for more information on using this command and examples.

Standard I/O capability
If AO (API Output Options) is set to 2, the XBee3 802.15.4 RF Module's IS I/O options are D0
(DIO0/ADC0/Commissioning Configuration) - D8 (DIO8/DTR/SLP_Request Configuration) and four
analog channels: AD0/DIO0 - AD3/DIO3.
When operating in Transparent mode (AP (API Enable) = 0 and AO (API Output Options) = 2), the data is
returned in the following format:
All bytes are converted to ASCII:

number of samples<CR>
AIO/DIO mask (Bits 0 - 8 are digital I/O; Bits 9 - 12 analog channels)<CR>
DIO data<CR> (If DIO lines are enabled)
ADC channel Data<CR> (This will repeat for every enabled ADC channel)
<CR> (end of data noted by extra <CR>)

AT commands I/O sampling commands

Digi XBee3® 802.15.4 RF Module User Guide 159

When operating in API mode (AP = 1), the command immediately returns anOK response. The data
follows in the normal API format for DIO data.

Extended I/O capability
If A0 is set to 0 or 1, the XBee3 802.15.4 RF Module's IS I/O options are D0 (DIO0/ADC0/Commissioning
Configuration) - D9 (DIO9/ON_SLEEP Configuration) and P0 (DIO10/RSSI/PWM0 Configuration) - P4
(DIO14/UART_DIN Configuration) and four analog channels AD0/DIO0 - AD3/DIO3.
When operating in Transparent mode (AP = 0 and AO = 0, AO = 1), the data is returned in the following
format:
All bytes are converted to ASCII:

number of samples<CR>
DIO mask (Bits 0 - 14 are digital I/O<CR>
AIO mask (Bits 0 - 3 are Analog channels<CR>
DIO data<CR> (If DIO lines are enabled)
ADC channel Data<CR> (This will repeat for every enabled ADC channel)
<CR> (end of data noted by extra <CR>)

When operating in API mode (AP = 1), the command immediately returns anOK response. The data
follows in the normal API format for DIO data.

Parameter range
N/A

Default
N/A

IR (Sample Rate)
Set or read the I/O sample rate to enable periodic sampling. When set, this parameter causes the
device to sample all enabled DIO and ADC at a specified interval.
To enable periodic sampling, set IR to a non-zero value, and enable the analog or digital I/O
functionality of at least one device pin (see D0 (DIO0/ADC0/Commissioning Configuration)-D8
(DIO8/DTR/SLP_Request Configuration), P0 (DIO10/RSSI/PWM0 Configuration)-P2 (DIO12/TH_SPI_
MISO Configuration).

WARNING! If you set IR to 1 or 2, the device will not keep up andmany samples will be lost.

Parameter range
0 - 0xFFFF (x 1 ms)

Default
0

IC (DIO Change Detect)
Set or read the digital I/O pins to monitor for changes in the I/O state.
IC works with the individual pin configuration commands (D0 - D9, P0 - P5). If the device detects a
change on an enabled digital I/O pin, it immediately transmits a digital I/O sample to the address

AT commands I/O sampling commands

Digi XBee3® 802.15.4 RF Module User Guide 160

specified by DH + DL. If sleep is enabled, the edge transition must occur during a wake period to
trigger a change detect.
The data transmission contains only DIO data.
IC is a bitmask you can use to enable or disable edge detection on individual digital I/O lines. Only
DIO0 through DIO15 can be sampled using a Change Detect.

Bit field

Bit I/O line Device pin

0 DIO0 Micro pin 31/SMT pin 33/TH pin 20

1 DIO1 Micro pin 30/SMT pin 32/TH pin 19

2 DIO2 Micro pin 29/SMT pin 31/TH pin 18

3 DIO3 Micro pin 28/SMT pin 30/TH pin 17

4 DIO4 Micro pin 23/SMT pin 24/TH pin 11

5 DIO5 Micro pin 26/SMT pin 28/TH pin 15

6 DIO6 Micro pin 27/SMT pin 29/TH pin 16

7 DIO7 Micro pin 24/SMT pin 25/TH pin 12

8 DIO8 Micro pin 9/SMT pin 10/TH pin 9

9 DIO9 Micro pin 25/SMT pin 26/TH pin 13

10 DIO10 Micro pin 7/SMT pin 7/TH pin 6

11 DIO11 Micro pin 8/SMT pin 8/TH pin 7

12 DIO12 Micro pin 5/SMT pin 5/TH pin 4

13 DIO13 Micro pin 3/SMT pin 3/TH pin 2

14 DIO14 Micro pin 4/SMT pin 4/TH pin 3

Parameter range
0 - 0x7FFF

Default
0

AV (Analog Voltage Reference)
The analog voltage reference used for A/D sampling.

Parameter range
0 - 2

AT commands I/O line passing commands

Digi XBee3® 802.15.4 RF Module User Guide 161

Parameter Description

0 1.25 V reference

1 2.5 V reference

2 VDD reference

Default
0

IT (Samples before TX)
Sets or displays the number of samples to collect before transmitting data. The maximum number of
samples is dependent on the number of enabled I/O lines and the maximum payload available.
If IT is set to a number too big to fit in the maximum payload, it is reduced such that it will fit. A query
of IT after setting it reports the actual number of samples in a packet.

Parameter range
0x1 - 0xFF

Default
1

IF (Sleep Sample Rate)
The number of sleep cycles that elapse between periodic I/O samples.

Parameter range
1 – 0xFF

Default
1

IO (Digital Output Level)
Sets digital output levels. This allows DIO lines setup as outputs to be changed through Command
mode.

Parameter range
8-bit bit map; each bit represents the level of an I/O line set up as an output

Default
N/A

I/O line passing commands
The following AT commands are I/O line passing commands.

AT commands I/O line passing commands

Digi XBee3® 802.15.4 RF Module User Guide 162

IA (I/O Input Address)
The source address of the device to which outputs are bound.
To disable I/O line passing, set all bytes to 0xFF.
To allow any I/O packet addressed to this device (including broadcasts) to change the outputs, set IA
to 0xFFFF.

Parameter range
0 - 0xFFFF FFFF FFFF FFFF

Default
0xFFFFFFFFFFFFFFFF (I/O line passing disabled)

IU (I/O Output Enable)
IU disables or enables I/O API UART output when line passing is enabled if the received sample has a
source address that matches IA (I/O Input Address) or if IA is set to 0xFFFF.

Note To enable API output, you must set AP (API Enable) to an API mode (AP = 1 or 2).

Parameter range
0 - 1

Parameter Description

0 Disabled

1 Enabled

Default
1

T0 (D0 Timeout Timer)
Specifies how long pin D0 (DIO0/ADC0/Commissioning Configuration) holds a given value before it
reverts to configured value. If set to 0, there is no timeout.

Parameter range
0 - 0xFF

Default
0

T1 (D1 Output Timeout Timer)
Specifies how long pin D1 (DIO1/ADC1/TH_SPI_ATTN Configuration) holds a given value before it
reverts to configured value. If set to 0, there is no timeout.

Parameter range
0 - 0xFF

AT commands I/O line passing commands

Digi XBee3® 802.15.4 RF Module User Guide 163

Default
0

T2 (D2 Output Timeout Timer)
Specifies how long pin D2 (DIO2/ADC2/TH_SPI_CLK Configuration) holds a given value before it reverts
to configured value. If set to 0, there is no timeout.

Parameter range
0 - 0xFF

Default
0

T3 (D3 Output Timeout Timer)
Specifies how long pin D3 (DIO3/ADC3/TH_SPI_SSEL Configuration) holds a given value before it
reverts to configured value. If set to 0, there is no timeout.

Parameter range
0 - 0xFF

Default
0

T4 (D4 Output Timeout Timer)
Specifies how long pin D4 (DIO4/TH_SPI_MOSI Configuration) holds a given value before it reverts to
configured value. If set to 0, there is no timeout.

Parameter range
0 - 0xFF

Default
0

T5 (D5 Output Timeout Timer)
Specifies how long pin D5 (DIO5/Associate Configuration) holds a given value before it reverts to
configured value. If set to 0, there is no timeout.

Parameter range
0 - 0xFF

Default
0

T6 (D6 Output Timeout Timer)
Specifies how long pin D6 (DIO6/RTS Configuration) holds a given value before it reverts to configured
value. If set to 0, there is no timeout.

AT commands I/O line passing commands

Digi XBee3® 802.15.4 RF Module User Guide 164

Parameter range
0 - 0xFF

Default
0

T7 (D7 Output Timeout Timer)
Specifies how long pin D7 (DIO7/CTS Configuration) holds a given value before it reverts to configured
value. If set to 0, there is no timeout.

Parameter range
0 - 0xFF

Default
0

T8 (D8 Output Timer)
Specifies how long pin D8 (DIO8/DTR/SLP_Request Configuration) holds a given value before it reverts
to configured value. If set to 0, there is no timeout.

Parameter range
0 - 0xFF

Default
0

T9 (D9 Output Timer)
Specifies how long pin D9 (DIO9/ON_SLEEP Configuration) holds a given value before it reverts to
configured value. If set to 0, there is no timeout.

Parameter range
0 - 0xFF

Default
0

Q0 (P0 Output Timer)
Specifies how long pin P0 holds a given value before it reverts to configured value. If set to 0, there is
no timeout.

Parameter range
0 - 0xFF

Default
0

AT commands Location commands

Digi XBee3® 802.15.4 RF Module User Guide 165

Q1 (P1 Output Timer)
Specifies how long pin P1 holds a given value before it reverts to configured value. If set to 0, there is
no timeout.

Parameter range
0 - 0xFF

Default
0

Q2 (P2 Output Timer)
Specifies how long pin P2 holds a given value before it reverts to configured value. If set to 0, there is
no timeout.

Parameter range
0 - 0xFF

Default
0

PT (PWM Output Timeout)
Specifies how long both PWM outputs (P0, P1) output a given PWM signal before it reverts to the
configured value (M0/M1). If set to 0, there is no timeout. This timeout only affects these pins when
they are configured as PWM output.

Parameter range
0 - 0xFF (x 100 ms)

Default
0xFF

Location commands
The following commands are user-defined parameters used to store the physical location of the
deployed device.

LX (Location X)
User-defined GPS latitude coordinates of the node that is displayed on Digi Remote Manager and
Network Assistant.

Parameter range
0 - 15 ASCII characters

Default
One ASCII space character (0x20)

AT commands Diagnostic commands - firmware/hardware information

Digi XBee3® 802.15.4 RF Module User Guide 166

LY (Location Y)
User-defined GPS longitude coordinates of the node that is displayed on Digi Remote Manager and
Network Assistant.

Parameter range
0 - 15 ASCII characters

Default
One ASCII space character (0x20)

LZ (Location Z)
User-defined GPS elevation of the node that is displayed on Digi Remote Manager and Network
Assistant.

Parameter range
0 - 15 ASCII characters

Default
One ASCII space character (0x20)

Diagnostic commands - firmware/hardware information
The following AT commands provide information about the device's hardware and firmware.

VR (Firmware Version)
Reads the firmware version on a device.

Parameter range
0x2000 - 0x2FFF

Default
Set in the firmware

VL (Version Long)
Shows detailed version information including the application build date and time.

Parameter range
N/A

Default
N/A

VH (Bootloader Version)
Reads the bootloader version of the device.

AT commands Diagnostic commands - firmware/hardware information

Digi XBee3® 802.15.4 RF Module User Guide 167

Parameter range
N/A

Default
N/A

HV (Hardware Version)
Display the hardware version number of the device.

Parameter range
0 - 0xFFFF [read-only]

Default
Set in firmware

%C (Hardware/Software Compatibility)
Specifies what firmware is compatible with this device's hardware.%C is compared to the to the
"compatibility_number" field of the firmware configuration xml file. Firmware with a compatibility
number lower than the value returned by%C cannot be loaded onto the board. If an invalid firmware
is loaded, the device will not boot until a valid firmware is reloaded.

Parameter range
[read-only]

Default
N/A

%P (Invoke Bootloader)
Forces the device to reset into the bootloader menu.
This command can only be issued locally.

Parameter range
N/A

Default
N/A

%V (Supply Voltage)
Reads the voltage on the Vcc pin in mV.

Parameter range
0 - 0xFFFF (in mV) [read only]

Default
N/A

AT commands MicroPython commands

Digi XBee3® 802.15.4 RF Module User Guide 168

TP (Module Temperature)
The current module temperature in degrees Celsius. The temperature is represented in two’s
complement, as shown in the following example:
1 °C = 0x0001 and -1°C = 0xFFFF

Parameter range
0 - 0xFFFF (Celsius) [read-only]

Default
N/A

DD (Device Type Identifier)
Stores the Digi device type identifier value. Use this value to differentiate between multiple types of
devices.

Parameter range
0 - 0xFFFFFFFF

Default
0x130000

CK (Configuration CRC)
Reads the cyclic redundancy check (CRC) of the current AT command configuration settings to
determine if the configuration has changed.
After a firmware update this commandmay return a different value.

Parameter range
0 - 0xFFFF [read-only]

Default
N/A

FR (Software Reset)
Resets the device. The device responds immediately with anOK and performs a reset 100 ms later.
If you issue FRwhile the device is in Commandmode, the reset effectively exits Commandmode.

Parameter range
N/A

Default
N/A

MicroPython commands
The following commands relate to using MicroPython on the XBee3 802.15.4 RF Module.

AT commands MicroPython commands

Digi XBee3® 802.15.4 RF Module User Guide 169

PS (Python Startup)
Sets whether or not the XBee3 802.15.4 RF Module runs the stored Python code at startup.

Range
0 - 1

Parameter Description

0 Do not run stored Python code at startup.

1 Run stored Python code at startup.

Default
0

PY (MicroPython Command)
Interact with the XBee3 802.15.4 RF Module using MicroPython. PY is a command with sub-
commands. These sub-commands are arguments to PY.

PYB (Bundled Code Report)
You can store compiled code in flash using the os.bundle() function in the MicroPython REPL; refer to
the Digi MicroPython Programming Guide. The PYB sub-command reports details of the bundled code.
In Commandmode, it returns two lines of text, for example:

bytecode: 619 bytes (hash=0x0900DBCE)
compiled: 2017-05-09T15:49:44

The messages are:

n bytecode: the size of bytecode stored in flash and its 32-bit hash. A size of 0 indicates that
there is no stored code.

n compiled: a compilation timestamp. A timestamp of 2000-01-01T00:00:00 indicates that the
clock was not set during compilation.

In API mode, PYB returns three 32-bit big-endian values:

n bytecode size
n bytecode hash
n timestamp as seconds since 2000-01-01T00:00:00

PYE (Erase Bundled Code)
PYE interrupts any running code, erases any bundled code and then does a soft-reboot on the
MicroPython subsystem.

PYV (Version Report)
Report the MicroPython version.

PY^ (Interrupt Program)
Sends KeyboardInterrupt to MicroPython. This is useful if there is a runaway MicroPython program
and you have filled the stdin buffer. You can enter Commandmode (+++) and send ATPY^ to interrupt

https://www.digi.com/resources/documentation/Digidocs/90002219/

AT commands File system commands

Digi XBee3® 802.15.4 RF Module User Guide 170

the program.

Default
N/A

File system commands
To access the file system, enter Commandmode and use the following commands. All commands
block the AT command processor until completed and only work from Commandmode; they are not
valid for API mode or MicroPython's xbee.atcmd() method. Commands are case-insensitive as are file
and directory names. Optional parameters are shown in square brackets ([]).

FS (File System)
FS is a command with sub-commands. These sub-commands are arguments to FS.

Error responses
If a command succeeds it returns information such as the name of the current working directory or a
list of files, or OK if there is no information to report. If it fails, you see a detailed error message
instead of the typical ERROR response for a failing AT command. The response is a named error code
and a textual description of the error.

Note The exact content of error messages may change in the future. All errors start with a upper case
E, followed by one or more uppercase letters and digits, a space, and an description of the error. If
writing your own AT command parsing code, you can determine if an FS command response is an error
by checking if the first letter of the response is upper case E.

FS (File System)
When sent without any parameters, FS prints a list of supported commands.

FS PWD
Prints the current working directory, which always starts with / and defaults to /flash at startup.

FS CD directory
Changes the current working directory to directory. Prints the current working directory or an error if
unable to change to directory.

FS MD directory
Creates the directory directory. Prints OK if successful or an error if unable to create the requested
directory.

FS LS [directory]
Lists files and directories in the specified directory. The directory parameter is optional and defaults
to a period (.), which represents the current directory. The list ends with a blank line.
Entries start with zero or more spaces, followed by file size or the string <DIR> for directories, then a
single space character and the name of the entry. Directory names end with a forward slash (/) to
differentiate them from files.

<DIR> ./
<DIR> ../

AT commands File system commands

Digi XBee3® 802.15.4 RF Module User Guide 171

<DIR> lib/
32 test.txt

FS PUT filename
Starts a YMODEM receive on the XBee Smart Modem, storing the received file to filename and
ignoring the filename that appears in block 0 of the YMODEM transfer. The XBee Smart Modem sends
a prompt (Receiving file with YMODEM...) when it is ready to receive, at which point you should
initiate a YMODEM send in your terminal emulator.
If the command is incorrect, the reply will be an error as described in Error responses.

FS HASH filename
Print a SHA-256 hash of a file to allow for verification against a local copy of the file. On Windows, you
can generate a SHA-256 hash of a file with the command certutil -hashfile test.txt SHA256. On Mac
and Linux use shasum -b -a 256 test.txt.

FS GET filename
Starts a YMODEM send of filename on the XBee device. When it is ready to send, the XBee Smart
Modem sends a prompt: (Sending file with YMODEM...). When the prompt is sent, you should initiate
a YMODEM receive in your terminal emulator.
If the command is incorrect, the reply will be an error as described in Error responses.

FS RM file_or_directory
Removes the file or empty directory specified by file_or_directory. This command fails with an error if
file_or_directory does not exist, is not empty, refers to the current working directory or one of its
parents.

Note Removing a file does not reclaim the space used by that file. Use the ATFS INFO command to
see how much space is used up by removed files.

FS INFO
Report on the size of the filesystem, showing bytes in use, available, marked bad and total. The report
ends with a blank line, as with most multi-line AT command output. Example output:

204800 used
695296 free

0 bad
900096 total

FS FORMAT confirm
Formats the file system, leaving it with a default directory structure. Pass the word confirm as the
first parameter to confirm the format. The XBee Smart Modem responds with Formatting... when the
format starts, and will print OK followed by a carriage return when it finishes.

FK (File System Public Key)
Configures the device's File System Public Key.
The 65-byte public key is required to verify that the file system that is downloaded over-the-air is a
valid XBee3 file system compatible with the 802.15.4 firmware.
For further information, refer to Set the public key on the XBee3 device.

AT commands Memory access commands

Digi XBee3® 802.15.4 RF Module User Guide 172

Parameter range
A valid 65-byte ECDSA public key.
Other accepted parameters:
0 = Clear the public key
1 = Returns the upper 48 bytes of the public key
2 = Returns the lower 17 bytes of the public key

Default
0

Note The Default value of 0 indicates that no public key has been set and hence, all file system
updates will be rejected.

Memory access commands
This section details the executable commands that provide memory access to the device.

AC (Apply Changes)
This command applies changes to all command parameters configured in Commandmode.
Any of the following also applies changes the same as issuing an AC command:

n Exiting Commandmode with a CN command.
n Exiting Commandmode via timeout.
n Receiving a 0x08 API command frame.
n Issuing a 0x08 Local AT Command API frame.
n Issuing a remote 0x17 AT Command API frame with option bit 1 set.

Example: Altering the UART baud rate with the BD command does not change the operating baud
rate until after an AC command is received; at this point, the interface immediately changes baud
rates.

Parameter range
N/A

Default
N/A

WR (Write)
Immediately writes parameter values to non-volatile flash memory so they persist through a power
cycle. Operating network parameters are persistent and do not require a WR command for the device
to reattach to the network.

Note Once you issue a WR command, do not send any additional characters to the device until after
you receive the OK response. Use the WR command sparingly; the device’s flash supports a limited
number of write cycles.

AT commands BLE commands

Digi XBee3® 802.15.4 RF Module User Guide 173

Parameter range
N/A

Default
N/A

RE (Restore Defaults)
Restore device parameters to factory defaults.
Does not exit out of Commandmode.

Parameter range
N/A

Default
N/A

BLE commands
The following AT commands are BLE commands.

BL command
BL reports the EUI-48 Bluetooth device address. Due to standard XBee AT Command processing,
leading zeroes are not included in the response when in Commandmode.

Parameter range
N/A

Default
N/A

BT command
BT enables or disables the Bluetooth functionality.

Note When Bluetooth is enabled, the XBee3 802.15.4 RF Module cannot be in Sleepmode. If the device
is configured to allow Sleepmode and you enable Bluetooth, the XBee3 802.15.4 RF Module will not
enter sleep.

Parameter range

Bit Description

0 Bluetooth functionality is disabled.

1 Bluetooth functionality is enabled.

Default
0

AT commands Custom default commands

Digi XBee3® 802.15.4 RF Module User Guide 174

$S (SRP Salt)

Note You should only use this command if you have already configured a password on the XBee device
and the salt corresponds to the password.

The Secure Remote Password (SRP) Salt is a 32-bit number used to create an encrypted password for
the XBee3 802.15.4 RF Module. Use the $S command in conjunction with the $V, $W, $X, and $Y
verifiers. Together, the command and the verifiers authenticate the client for the BLE API Service
without storing the XBee password on the XBee3 802.15.4 RF Module.
Configure the salt in the $S command. In the $V, $W, $X, and $Y verifiers, you specify the 128-byte
verifier value, where each command represents 32 bytes of the total 128-byte verifier value.

Note The XBee3 802.15.4 RF Module does not allow for 0 to be valid salt. If the value is 0, SRP is
disabled and you are not able to authenticate using Bluetooth.

Parameter range
0 - FFFFFFFF

Default
0

$V, $W, $X, $Y commands (SRP Salt verifier)
Use the $V, $W, $X, and $Y verifiers in conjunction with $S (SRP Salt) to create an encrypted password
for the XBee3 802.15.4 RF Module. Together, $S and the verifiers authenticate the client for the BLE
API Service without storing the XBee password on the XBee device.
Configure the salt with the $S command. In the $V, $W, $X, and $Y verifiers, you specify the 128-byte
verifier value, where each command represents 32 bytes of the total 128-byte verifier value.

Parameter range
0 - FFFFFFFF

Default
0

Custom default commands
The following commands are used to assign custom defaults to the device. Send RE (Restore Defaults)
to restore custom defaults. You must send these commands as local AT commands, they cannot be
set using Remote AT Command Request frame - 0x17.

%F (Set Custom Default)
When%F is received, the XBee3 802.15.4 RF Module takes the next command received and applies it
to both the current configuration and the custom defaults, so that when defaults are restored with RE
(Restore Defaults) the custom value is used.

Parameter range
N/A

AT commands Custom default commands

Digi XBee3® 802.15.4 RF Module User Guide 175

Default
N/A

!C (Clear Custom Defaults)
Clears all custom defaults. This command does not change the current settings, but only changes the
defaults so that RE (Restore Defaults) restores settings to the factory values.

Parameter range
N/A

Default
N/A

R1 (Restore Factory Defaults)
Restores factory defaults, ignoring any custom defaults set using %F (Set Custom Default).

Parameter range
N/A

Default
N/A

Operate in API mode

API mode overview 177
Use the AP command to set the operation mode 177
API frame format 177

Digi XBee3® 802.15.4 RF Module User Guide 176

Operate in API mode API mode overview

Digi XBee3® 802.15.4 RF Module User Guide 177

API mode overview
As an alternative to Transparent operating mode, you can use API operating mode. API mode provides
a structured interface where data is communicated through the serial interface in organized packets
and in a determined order. This enables you to establish complex communication between devices
without having to define your own protocol. The API specifies how commands, command responses
and device status messages are sent and received from the device using the serial interface or the
SPI interface.
We may add new frame types to future versions of the firmware, so we recommend building the ability
to filter out additional API frames with unknown frame types into your software interface.

Use the AP command to set the operation mode
Use AP (API Enable) to specify the operation mode:

AP command
setting Description

AP = 0 Transparent operating mode, UART serial line replacement with API modes
disabled. This is the default option.

AP = 1 API operation.

AP = 2 API operation with escaped characters (only possible on UART).

The API data frame structure differs depending on what mode you choose.

API frame format
An API frame consists of the following:

n Start delimeter
n Length
n Frame data
n Checksum

API operation (AP parameter = 1)
This is the recommended API mode for most applications. The following table shows the data frame
structure when you enable this mode:

Frame fields Byte Description

Start delimiter 1 0x7E

Length 2 - 3 Most Significant Byte, Least Significant Byte

Frame data 4 - number (n) API-specific structure

Checksum n + 1 1 byte

Operate in API mode API frame format

Digi XBee3® 802.15.4 RF Module User Guide 178

Any data received prior to the start delimiter is silently discarded. If the frame is not received correctly
or if the checksum fails, the XBee replies with a radio status frame indicating the nature of the failure.

API operation with escaped characters (AP parameter = 2)
Setting API to 2 allows escaped control characters in the API frame. Due to its increased complexity,
we only recommend this API mode in specific circumstances. API 2 may help improve reliability if the
serial interface to the device is unstable or malformed frames are frequently being generated.
When operating in API 2, if an unescaped 0x7E byte is observed, it is treated as the start of a new API
frame and all data received prior to this delimiter is silently discarded. For more information on using
this API mode, see the Escaped Characters and API Mode 2 in the Digi Knowledge base.
API escaped operating mode works similarly to API mode. The only difference is that when working in
API escapedmode, the software must escape any payload bytes that match API frame specific data,
such as the start-of-frame byte (0x7E). The following table shows the structure of an API frame with
escaped characters:

Frame fields Byte Description

Start delimiter 1 0x7E

Length 2 - 3 Most Significant Byte, Least Significant Byte Characters escaped if needed

Frame data 4 - n API-specific structure

Checksum n + 1 1 byte

Start delimiter field
This field indicates the beginning of a frame. It is always 0x7E. This allows the device to easily detect a
new incoming frame.

Escaped characters in API frames
If operating in API mode with escaped characters (AP parameter = 2), when sending or receiving a
serial data frame, specific data values must be escaped (flagged) so they do not interfere with the
data frame sequencing. To escape an interfering data byte, insert 0x7D and follow it with the byte to
be escaped (XORed with 0x20).
The following data bytes need to be escaped:

n 0x7E: start delimiter
n 0x7D: escape character
n 0x11: XON
n 0x13: XOFF

To escape a character:

1. Insert 0x7D (escape character).
2. Append it with the byte you want to escape, XORed with 0x20.

In API mode with escaped characters, the length field does not include any escape characters in the
frame and the firmware calculates the checksum with non-escaped data.

http://knowledge.digi.com/articles/Knowledge_Base_Article/Escaped-Characters-and-API-Mode-2

Operate in API mode API frame format

Digi XBee3® 802.15.4 RF Module User Guide 179

Example: escape an API frame
To express the following API non-escaped frame in API operating mode with escaped characters:

Start delimiter Length Frame type
Frame Data

Checksum
Data

7E 00 0F 17 01 00 13 A2 00 40 AD 14 2E FF FE 02 4E 49 6D

You must escape the 0x13 byte:

1. Insert a 0x7D.
2. XOR byte 0x13 with 0x20: 13 ⊕ 20 = 33

The following figure shows the resulting frame. Note that the length and checksum are the same as
the non-escaped frame.

Start delimiter Length Frame type
Frame Data

Checksum
Data

7E 00 0F 17 01 00 7D 33 A2 00 40 AD 14 2E FF FE 02 4E 49 6D

The length field has a two-byte value that specifies the number of bytes in the frame data field. It does
not include the checksum field.

Length field
The length field is a two-byte value that specifies the number of bytes contained in the frame data
field. It does not include the checksum field.

Frame data
This field contains the information that a device receives or will transmit. The structure of frame data
depends on the purpose of the API frame:

Start delimiter Length

Frame data

ChecksumFrame type Data

1 2 3 4 5 6 7 8 9 ... n n+1

0x7E MSB LSB API frame type Data Single byte

n Frame type is the API frame type identifier. It determines the type of API frame and indicates
how the Data field organizes the information.

n Data contains the data itself. This information and its order depend on the what type of frame
that the Frame type field defines.

Multi-byte values are sent big-endian.

Calculate and verify checksums
To calculate the checksum of an API frame:

1. Add all bytes of the packet, except the start delimiter 0x7E and the length (the second and
third bytes).

2. Keep only the lowest 8 bits from the result.
3. Subtract this quantity from 0xFF.

Operate in API mode API frame format

Digi XBee3® 802.15.4 RF Module User Guide 180

To verify the checksum of an API frame:

1. Add all bytes including the checksum; do not include the delimiter and length.
2. If the checksum is correct, the last two digits on the far right of the sum equal 0xFF.

Example
Consider the following sample data packet: 7E 00 0A 01 01 50 01 00 48 65 6C 6C 6F B8

Byte(s) Description

7E Start delimiter

00 0A Length bytes

01 API identifier

01 API frame ID

50 01 Destination address low

00 Option byte

48 65 6C 6C 6F Data packet

B8 Checksum

To calculate the check sum you add all bytes of the packet, excluding the frame delimiter 7E and the
length (the second and third bytes):
7E 00 0A 01 01 50 01 00 48 65 6C 6C 6F B8
Add these hex bytes:
01 + 01 + 50 + 01 + 00 + 48 + 65 + 6C + 6C + 6F = 247
Now take the result of 0x247 and keep only the lowest 8 bits which, in this example, is 0x47 (the two
far right digits). Subtract 0x47 from 0xFF and you get 0xB8 (0xFF - 0x47 = 0xB8). 0xB8 is the checksum
for this data packet.
If an API data packet is composed with an incorrect checksum, the XBee3 802.15.4 RF Module will
consider the packet invalid and will ignore the data.
To verify the check sum of an API packet add all bytes including the checksum (do not include the
delimiter and length) and if correct, the last two far right digits of the sum will equal FF.
01 + 01 + 50 + 01 + 00 + 48 + 65 + 6C + 6C + 6F + B8 = 2FF

Frame descriptions

The following sections describe the API frames.

TX Request: 64-bit address frame - 0x00 182
TX Request: 16-bit address - 0x01 183
AT Command Frame - 0x08 184
AT Command - Queue Parameter Value frame - 0x09 186
Transmit Request frame - 0x10 186
Explicit Addressing Command frame - 0x11 188
Remote AT Command Request frame - 0x17 192
BLE Unlock API frame - 0x2C 192
User Data Relay frame - 0x2D 195
RX Packet: 64-bit Address frame - 0x80 196
Receive Packet: 16-bit address frame - 0x81 197
RX (Receive) Packet: 64-bit address IO frame - 0x82 198
RX Packet: 16-bit address I/O frame - 0x83 200
AT Command Response frame - 0x88 202
TX Status frame - 0x89 204
Modem Status frame - 0x8A 206
Transmit Status frame - 0x8B 207
Receive Packet frame - 0x90 209
Explicit Rx Indicator frame - 0x91 211
I/O Data Sample Rx Indicator frame - 0x92 213
Remote Command Response frame - 0x97 215
BLE Unlock Response frame - 0xAC 215
User Data Relay Output - 0xAD 215

Digi XBee3® 802.15.4 RF Module User Guide 181

Frame descriptions TX Request: 64-bit address frame - 0x00

Digi XBee3® 802.15.4 RF Module User Guide 182

TX Request: 64-bit address frame - 0x00

Description
This frame causes the device to send payload data as an RF packet.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame
data
fields Offset Description

Frame
type

3 0x00

Frame ID 4 Identifies the data frame for the host to correlate with a subsequent ACK,
which is a TX Status frame - 0x89 that indicates the packet was transmitted
successfully. If set to 0, the device does not send a response.

64-bit
destination
address

5-12 Set to the 64-bit address of the destination device.
If set to 0x000000000000FFFF, the broadcast address is used.

Options 13 0x01 = Disable ACK
0x04 = Send packet with Broadcast PAN ID.
Set all other bits to 0.

RF data 14-n The RF data length can be up to 110 bytes, but may be less depending on
other factors discussed in Maximum payload.

Frame descriptions TX Request: 16-bit address - 0x01

Digi XBee3® 802.15.4 RF Module User Guide 183

TX Request: 16-bit address - 0x01

Description
A TX Request message causes the device to transmit data as an RF Packet.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data
fields Offset Description

Frame type 3 0x01

Frame ID 4 Identifies the data frame for the host to correlate with a subsequent TX
Status frame - 0x89. If set to 0, the device does not send a response.

16-bit
destination
address

5-6 Set to the 16-bit address of the destination device. Broadcast = 0xFFFF.

Options 7 0x01 = Disable ACK.
0x04 = Send packet with Broadcast PAN ID.
Set all other bits to 0.

RF data 8-n The RF data length can be up to 116 bytes, but may be less depending on
other factors discussed in Maximum payload.

Frame descriptions AT Command Frame - 0x08

Digi XBee3® 802.15.4 RF Module User Guide 184

AT Command Frame - 0x08

Description
Use this frame to query or set command parameters on the local device. This API command applies
changes after running the command. You can query parameter values by sending the AT Command
Frame - 0x08 with no parameter value field (the two-byte AT command is immediately followed by the
frame checksum). Any parameter that is set with this frame type will apply the change immediately. If
you wish to queue multiple parameter changes and apply them later, use the AT Command - Queue
Parameter Value frame - 0x09 instead.
When an AT command is queried, a AT Command Response frame - 0x88 response frame is populated
with the parameter value that is currently set on the device. The Frame ID of the 0x88 response is the
same one set by the command in the 0x08 frame.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame
data
fields Offset Description

Frame
type

3 0x08

Frame ID 4 Identifies the data frame for the host to correlate with a subsequent response
(0x88). If set to 0, the device does not send a response.

AT
command

5-6 Command name: two ASCII characters that identify the AT command.

Parameter
value

7-n If present, indicates the requested parameter value to set the given register.
If no characters are present, it queries the register.

Example
The following example illustrates an AT Command frame where the device's SL parameter value is
queried.

Frame data fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x04

Frame type 3 0x08

Frame descriptions AT Command Frame - 0x08

Digi XBee3® 802.15.4 RF Module User Guide 185

Frame data fields Offset Example

Frame ID 4 0x13

AT command 5 0x53 (S)

6 0x4C (L)

Parameter value (optional)

Checksum 8 0x45

The following example illustrates an AT Command frame when you modify the device's DL parameter
value to a broadcast address of 0xFFFF. A non-zero Frame ID can be used to correlate the AT
command request with the corresponding response frame.

Frame data fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x08

Frame type 3 0x08

Frame ID 4 0x4D

AT command 5 0x44 (D)

6 0x4C (L)

Parameter value 7-10 0xFF
0xFF

Checksum 11 0x1C

Frame descriptions AT Command - Queue Parameter Value frame - 0x09

Digi XBee3® 802.15.4 RF Module User Guide 186

AT Command - Queue Parameter Value frame - 0x09

Description
This frame allows you to query or set device parameters. In contrast to the AT Command (0x08)
frame, this frame sets new parameter values and does not apply them until you issue either:

n The AT Command (0x08) frame (for API type)
n The AC command

When querying parameter values, the 0x09 frame behaves identically to the 0x08 frame; the response
for this command is also an AT Command Response frame (0x88).

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data fields Offset Description

Frame type 3 0x09

Frame ID 4 Identifies the data frame for the host to correlate with a
subsequent response (0x88). If set to 0, the device does
not send a response.

AT command 5-6 Command name: two ASCII characters that identify the AT
command.

Parameter value
(BD7 = 115200 baud)
(optional)

7-n If present, indicates the requested parameter value to set
the given register. If no characters are present, queries
the register.

Transmit Request frame - 0x10

Description
This frame causes the device to send payload data as an RF packet to a specific destination.

n For broadcast transmissions, set the 64-bit destination address to 0x000000000000FFFF.
n For unicast transmissions, set the 64-bit or 16-bit address field to the address of the desired

destination node.
n If transmitting to a 64-bit destination, set the 16-bit address field to 0xFFFE, otherwise set the

64-bit destination address field to 0xFFFFFFFFFFFFFFFF.
n Query the NP command to read the maximum number of payload bytes.

You can set the broadcast radius from 0 up to NH. If set to 0, the value of NH specifies the broadcast
radius (recommended). This parameter is only used for broadcast transmissions.
You can read the maximum number of payload bytes with the NP command.

Frame descriptions Transmit Request frame - 0x10

Digi XBee3® 802.15.4 RF Module User Guide 187

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data
fields Offset Description

Frame type 3 0x10

Frame ID 4 Identifies the data frame for the host to correlate with a subsequent ACK.
If set to 0, the device does not send a response.

64-bit
destination
address

5-12 MSB first, LSB last. Set to the 64-bit address of the destination device.
Broadcast = 0x000000000000FFFF. If transmitting to a 16-bit address, set
this field to 0xFFFFFFFFFFFFFFFF.

16-bit
destination
address

13-14 Set to the 16-bit address of the destination device, or set to 0xFFFE if
sending to the 64-bit address of the end device.

Broadcast
radius

15 Sets the maximum number of hops a broadcast transmission can occur. If
set to 0, the broadcast radius is set to the maximum hops value.

Reserved 16 Set to 0.

RF data 17-n Up to NP bytes per packet. Sent to the destination device.

Example
The example shows how to send a transmission to a device if you disable escaping (AP = 1), with
destination address 0x0013A200 400A0127, and payload “TxData0A”.

Frame data fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x16

Frame type 3 0x10

Frame ID 4 0x01

Frame descriptions Explicit Addressing Command frame - 0x11

Digi XBee3® 802.15.4 RF Module User Guide 188

Frame data fields Offset Example

64-bit destination
address

MSB 5 0x00

6 0x13

7 0xA2

8 0x00

9 0x40

10 0x0A

11 0x01

LSB 12 0x27

16-bit destination
network address

MSB 13 0xFF

LSB 14 0xFE

Reserved 15-16 0x00

RF data 17 0x54

18 0x78

19 0x44

20 0x61

21 0x74

22 0x61

23 0x30

24 0x41

Checksum 25 0x13

If you enable escaping (AP = 2), the frame should look like:
0x7E 0x00 0x16 0x10 0x01 0x00 0x7D 0x33 0xA2 0x00 0x40 0x0A 0x01 0x27 0xFF 0xFE 0x00
0x00 0x54 0x78 0x44 0x61 0x74 0x61 0x30 0x41 0x7D 0x33

The device calculates the checksum (on all non-escaped bytes) as [0xFF - (sum of all bytes from API
frame type through data payload)].

Explicit Addressing Command frame - 0x11

Description
This frame is similar to Transmit Request (0x10), but it also requires you to specify the application-
layer addressing fields: endpoints, cluster ID, and profile ID.
This frame causes the device to send payload data as an RF packet to a specific destination, using
specific source and destination endpoints, cluster ID, and profile ID.

Frame descriptions Explicit Addressing Command frame - 0x11

Digi XBee3® 802.15.4 RF Module User Guide 189

n For broadcast transmissions, set the 64-bit destination address to 0x000000000000FFFF.
n For unicast transmissions, set the 64 bit address field to the address of the desired destination

node.
n If sending to a 16-bit address, set the 64-bit address to 0xFFFFFFFFFFFFFFFF, otherwise set

the 16-bit address to 0xFFFE.

Query the NP command to read the maximum number of payload bytes. For more information, see
Firmware commands.
You can read the maximum number of payload bytes with the NP command.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame
data fields Offset Description

Frame type 3 0x11

Frame ID 4 Identifies the data frame for the host to correlate with a subsequent ACK. If
set to 0, the device does not send a response.

64-bit
destination
Address

5-12 MSB first, LSB last. Set to the 64-bit address of the destination device.
Broadcast = 0x000000000000FFFF. Set to 0xFFFFFFFFFFFFFFFF if
transmitting to a 16-bit destination.

Reserved 13-14 Set to the 16-bit address of the destination device.

Source
Endpoint

15 Source Endpoint for the transmission.

Destination
Endpoint

16 Destination Endpoint for the transmission.

Cluster ID 17-18 The Cluster ID that the host uses in the transmission.

Profile ID 19-20 The Profile ID that the host uses in the transmission.

Reserved 21-22 Set to 0.

Data
Payload

23-n Data that is sent to the destination device.

Transmit Options bit field
See Transmit Request frame - 0x10.

Example
The following example sends a data transmission to a device with:

Frame descriptions Explicit Addressing Command frame - 0x11

Digi XBee3® 802.15.4 RF Module User Guide 190

n 64-bit address: 0x0013A200 01238400
n Source endpoint: 0xE8
n Destination endpoint: 0xE8
n Cluster ID: 0x11
n Profile ID: 0xC105
n Payload: TxData

Frame data fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x1A

Frame type 3 0x11

Frame ID 4 0x01

64-bit destination address MSB 5 0x00

6 0x13

7 0xA2

8 0x00

9 0x01

10 0x23

11 0x84

LSB12 0x00

Reserved 13 0xFF

14 0xFE

Source endpoint 15 0xE8

Destination endpoint 16 0xE8

Cluster ID 17 0x00

18 0x11

Profile ID 19 0xC1

20 0x05

Reserved 21-22 0x00

Frame descriptions Explicit Addressing Command frame - 0x11

Digi XBee3® 802.15.4 RF Module User Guide 191

Frame data fields Offset Example

Data payload 23 0x54

24 0x78

25 0x44

26 0x61

27 0x74

28 0x61

Checksum 29 0xA6

Frame descriptions Remote AT Command Request frame - 0x17

Digi XBee3® 802.15.4 RF Module User Guide 192

Remote AT Command Request frame - 0x17

Description
Used to query or set device parameters on a remote device. For parameter changes on the remote
device to take effect, you must apply changes, either by setting the Apply Changes options bit, or by
sending an AC command to the remote.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data
fields Offset Description

Frame type 3 0x17

Frame ID 4 Identifies the data frame for the host to correlate with a subsequent
response (0x97). If set to 0, the device does not send a response.

64-bit
destination
address

5-12 Broadcast = 0x000000000000FFFF. This field is ignored if the 16-bit network
address field equals anything other than 0xFFFF.

16-bit
destination
address

13-14 Set to match the 16-bit network address of the destination, MSB first, LSB
last. Set to 0xFFFF if 64-bit addressing is being used.

Remote
command
options

15 If bit 1 is set (0x02), the remote node immediately applies changes in the AT
command. If bit 1 is clear, you must send an AC command for the change to
take effect.

AT
command

16-17 Command name: two ASCII characters that identify the command.

Command
parameter

18-n If present, indicates the parameter value you request for a given register. If
no characters are present, it queries the register.

BLE Unlock API frame - 0x2C

Description
The XBee3 802.15.4 RF Module uses this frame to authenticate a connection on the Bluetooth
interface and unlock the processing of AT command frames. This frame is used in conjunction with the
BLE Unlock Response frame - 0xAC.
The unlock process is an implementation of the SRP (Secure Remote Password) algorithm using the
RFC5054 1024-bit group and the SHA-256 hash algorithm . The value of I is fixed to the username
apiservice.

https://en.wikipedia.org/wiki/Secure_Remote_Password_protocol
https://tools.ietf.org/html/rfc5054#appendix-A

Frame descriptions BLE Unlock API frame - 0x2C

Digi XBee3® 802.15.4 RF Module User Guide 193

Upon completion, each side will have derived a shared session key which is used to communicate in an
encrypted fashion with the peer. Additionally, a Modem Status frame - 0x8A with the status code 0x32
(Bluetooth Connected) is sent through the UART (if AP = 1 or 2). When an unlocked connection is
terminated, a Modem Status frame with the status code 0x33 (Bluetooth Disconnected) is sent
through the UART.
The following implementations are known to work with the BLE SRP implementation:

n github.com/cncfanatics/SRP

You need to modify the hashing algorithm to SAH256 and the values of N and g to use the
RFC5054 1024-bit group.

n github.com/cocagne/csrp
n github.com/cocagne/pysrp

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data fields Offset Description

Frame type 3 0x2C = Request
0xAC = Response

Step 4 Indicates the phase of authentication and interpretation of payload
data.
1 = Client presents A value
2 = Server presents B and salt
3 = Client present M1 session key validation value
4 = Server presents M2 session key validation value and two 12-byte
nonces
See the phase tables below for more information.
Step values greater than 0x80 indicate error conditions.
0x80 = Unable to offer B (cryptographic error with content, usually due
to A mod N == 0
0x81 = Incorrect payload length
0x82 = Bad proof of key
0x83 = Resource allocation error
0x84 = Request contained a step not in the correct sequence

Payload 5 Payload structure varies by Step value. Descriptions are in the tables
below.

The tables below provide more information about the phase of authentication and interpretation of
payload data.

Phase 1 (Client presents A)
If the A value is zero, the server will terminate the connection.

Frame data field Offset in frame Length

A 5 128 bytes

https://github.com/cncfanatics/SRP
https://github.com/cocagne/csrp
https://github.com/cocagne/pysrp

Frame descriptions BLE Unlock API frame - 0x2C

Digi XBee3® 802.15.4 RF Module User Guide 194

Phase 2 (Server presents B and salt)

Frame data field Offset in frame Length

salt 5 4 bytes

B 9 128 bytes

Phase 3 (Client presents M1)

Frame data field Offset in frame Length

M1 5 Hash algorithm digest length
(32 bytes for SHA256)

Phase 4 (Server presents M2)

Frame data field Offset in frame Length

M2 5 Hash algorithm digest length
(32 bytes for SHA256)

TX nonce 37 12-byte (96-bit) random nonce,
used as the constant prefix of
the counter block for
encryption/decryption of data
transmitted to the API service
by the client

RX nonce 49 12-byte (96-bit) random nonce,
used as the constant prefix of
the counter block for
encryption/decryption of data
received by the client from the
API service

Upon completion of M2 verification, the session key has been determined to be correct and the API
service is unlocked and allows additional API frames to be used. Content from this point is encrypted
using AES-256-CTR with the following parameters:

n Key: The entire 32-byte session key.
n Counter: 128 bits total, prefixed with the appropriate nonce shared during authentication. The

initial remaining counter value is 1.
The counter for data sent into the XBee API Service is prefixed with the TX nonce value (see the
Phase 4 table) and the counter for data sent by the XBee3 802.15.4 RF Module to the client is
prefixed with the RX nonce value.

Frame descriptions User Data Relay frame - 0x2D

Digi XBee3® 802.15.4 RF Module User Guide 195

Example sequence to perform AT Command XBee API frames over
BLE

1. Discover the XBee3 802.15.4 RF Module through scanning for advertisements.
2. Create a connection to the GATT Server.
3. Optional, but recommended: request a larger MTU for the GATT connection.
4. Turn on indications for the API Response characteristic.
5. Perform unlock procedure using unlock frames. See BLE Unlock API frame - 0x2C.
6. Once unlocked, you may send AT Command Frame - 0x08 frames and receive AT Command

Response frames received.
a. For each frame to send, form the API Frame, and encrypt through the stream

cipher as described in the unlock procedure. See BLE Unlock API frame - 0x2C.
b. Write the frame using one or more write operations.
c. When successful, the response arrives in one or more indications. If your stack does

not do it for you, remember to acknowledge each indication as it is received. Note
that you are expected to process these indications and the response data is not
available if you attempt to perform a read operation to the characteristic.

d. Decrypt the stream of content provided through the indications, using the stream
cipher as described in the unlock procedure. See BLE Unlock API frame - 0x2C.

User Data Relay frame - 0x2D

Frame descriptions RX Packet: 64-bit Address frame - 0x80

Digi XBee3® 802.15.4 RF Module User Guide 196

RX Packet: 64-bit Address frame - 0x80

Description
When a device configured with legacy API Rx Indicator (AO = 2) receives an RF data packet from a
device configured to use 64-bit addressing (MY = 0xFFFE), it sends this frame out the serial interface.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame
data
fields Offset Description

Frame
type

3 0x80

64-bit
source
address

4-11 The sender's 64-bit address.

RSSI 12 Received Signal Strength Indicator. The Hexadecimal equivalent of (-dBm)
value. For example if RX signal strength is -40 dBm, then 0x28 (40 decimal) is
returned.

Options 13 Bit field:
0 = [reserved].
1 = Packet was a broadcast packet.
2 = Packet was broadcast across all PANs.
3-7 = [reserved].

Received
data

14-n The RF data that the device receives.

Frame descriptions Receive Packet: 16-bit address frame - 0x81

Digi XBee3® 802.15.4 RF Module User Guide 197

Receive Packet: 16-bit address frame - 0x81

Description
When a device configured with legacy API Rx Indicator (AO = 2) receives an RF packet from a device
configured to use 16 bit addressing (MY < 0xFFFE), it sends this frame out the serial interface.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data
fields Offset Description

Frame type 3 0x81

Source
address

4-5 MSB first
LSB last

RSSI 6 RSSI = hexadecimal equivalent of -dBm value. For example, if RX signal
strength = -40 dBm, it returns 0x28 (40 decimal).

Options 7 Bit 0 = [reserved].
Bit 1 = Packet was a broadcast packet.
Bit 2 = Packet was broadcast across all PANs.
Bits 3 - 7 = [reserved].

RF data 8-n The RF data that the device receives.

Frame descriptions RX (Receive) Packet: 64-bit address IO frame - 0x82

Digi XBee3® 802.15.4 RF Module User Guide 198

RX (Receive) Packet: 64-bit address IO frame - 0x82

Description
When the device receives an I/O sample from a remote device configured to use 64-bit addressing, the
I/O data is sent out the UART using this frame type

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
specifications.

Frame data fields Offset Total number of samples Description

Frame type 3 N/A 0x82

64-bit source address 4-11 N/A MSB first, LSB last.

RSSI 12 N/A RSSI: Hexadecimal equivalent of
(-dBm) value. For example, if RX
signal strength = -40 dBm, the
device returns 0x28 (40 decimal).

Status 13 N/A bit 0 = reserved
bit 1 = Address broadcast
bit 2 = PAN broadcast
bits 3-7 = [reserved]

Number of samples 14 N/A Total number of samples.

Channel Indicator
(see bit field table
below)

15 MSB Indicates which inputs have
sampling enabled (if any).
Each bit represents either a DIO
line or ADC channel. Bit set to 1 if
channel is active

16 LSB

Digital samples
(if enabled) (see bit
field table below)

17 MSB If any of the DIO lines are enabled
in the Channel indicator, these
two bytes contain samples for all
enabled DIO lines. DIO lines that
do not have sampling enabled
return 0. If no DIO line is enabled,
no bytes are included in the
frame.

18 LSB

Frame descriptions RX (Receive) Packet: 64-bit address IO frame - 0x82

Digi XBee3® 802.15.4 RF Module User Guide 199

Frame data fields Offset Total number of samples Description

19 ADC0 MSB If the sample set includes any
ADC data, each enabled analog
input returns a two-byte value
indicating the A/D measurement
of that input.
ADC channel data is represented
as an unsigned 10-bit value right-
justified on a 16-bit boundary.
Analog samples are ordered
sequentially from AD0 to AD5.

20 ADC0 LSB

... N/A

n -1 ADCn MSB

n ADCn LSB

The following table shows the Channel Indicator and Digital Samples bit fields.

Bit field Description

Reserved 3 bits

A3 - A0 4 analog bits

D8 - D0 9 digital bits

Frame descriptions RX Packet: 16-bit address I/O frame - 0x83

Digi XBee3® 802.15.4 RF Module User Guide 200

RX Packet: 16-bit address I/O frame - 0x83

Description
When the device receives an I/O sample from a remote device configured to use 16-bit addressing, the
I/O data is sent out the UART using this frame type.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data
fields Offset

Total
number
of
samples Description

Frame type 3 N/A 0x83

Source
Address

4-5 N/A MSB first, LSB last.

RSSI 6 N/A RSSI: Hexadecimal equivalent of (-dBm) value. For example, if RX
signal strength = -40 dBm, the device returns 0x28 (40 decimal).

Options 7 N/A bit 0 = reserved
bit 1 = Address broadcast
bit 2 = PAN broadcast
bits 3-7 = [reserved]

Number of
samples

8 N/A Total number of samples.

Channel
Indicator
(see bit field
table
below)

9 MSB Indicates which inputs have sampling enabled (if any). Each bit
represents either a DIO line or ADC channel.
Bit set to 1 if channel is active.

10 LSB

Digital
Samples (if
enabled)
(see bit field
table
below)

11 MSB If any of the DIO lines are enabled in the Channel indicator, these
two bytes contain samples for all enabled DIO lines. DIO lines that
do not have sampling enabled return 0. If no DIO line is enabled, no
bytes are included in the frame.12 LSB

Frame descriptions RX Packet: 16-bit address I/O frame - 0x83

Digi XBee3® 802.15.4 RF Module User Guide 201

Frame data
fields Offset

Total
number
of
samples Description

Analog
samples

13 ADC0
MSB

If the sample set includes any ADC data, each enabled analog input
returns a two-byte value indicating the A/D measurement of that
input. ADC channel data is represented as an unsigned 10-bit value
right-justified on a 16-bit boundary. Analog samples are ordered
sequentially from AD0 to AD5.

14 ADC0
LSB

...

n - 1 ADCn
MSB

n ADCn
LSB

The following table shows the Channel Indicator bit field.

Bit field Description

Reserved 3 bits

A3 - A0 4 analog bits

D8 - D0 9 digital bits

Frame descriptions AT Command Response frame - 0x88

Digi XBee3® 802.15.4 RF Module User Guide 202

AT Command Response frame - 0x88

Description
A device sends this frame in response to an AT Command Frame - 0x08 and a AT Command - Queue
Parameter Value frame - 0x09. Some commands send back multiple frames; for example, the ND
command. This command ends by sending a frame with a status of 0 (OK) and no value. In the
particular case of ND, a frame is received via a remote node in the network and when the process is
finished, the AT command response is received. For details on the behavior of ND, see ND (Network
Discover).

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data
fields Offset Description

Frame type 3 0x88

Frame ID 4 Identifies the data frame for the host to correlate with a subsequent request
(0x08 or 0x09). If set to 0 in the request frame, the device does not send a
response.

AT
command

5-6 Command name: two ASCII characters that identify the command.

Command
status

7 0 = OK
1 = ERROR
2 = Invalid command
3 = Invalid parameter
4 = Tx failure

Command
data

The register data in binary format. If the host sets the register, the device
does not return this field.

Example
If you change the BD parameter on a local device with a frame ID of 0x01, and the parameter is valid,
the user receives the following response.

Frame data
fields Offset Example

Start delimiter 0 0x7E

Frame descriptions AT Command Response frame - 0x88

Digi XBee3® 802.15.4 RF Module User Guide 203

Frame data
fields Offset Example

Length MSB 1 0x00

LSB 2 0x05

Frame type 3 0x88

Frame ID 4 0x01

AT command 5 0x42 (B)

6 0x44 (D)

Command status 7 0x00

Command data (No command data implies the parameter was set rather than
queried)

Checksum 8 0xF0

Frame descriptions TX Status frame - 0x89

Digi XBee3® 802.15.4 RF Module User Guide 204

TX Status frame - 0x89

Description
When a TX request: TX Request: 64-bit address frame - 0x00 or TX Request: 16-bit address - 0x01 is
complete, the device sends an 0x89 TX Status frame. Other transmit request frames (0x10, 0x11) will
send an 0x8B status frame. This message indicates if the packet transmitted successfully or if there
was a failure.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data fields Offset Description

Frame type 3 0x89

Frame ID 4 Identifies the TX Request frame being reported.
If the Frame ID = 0 in the TX Request, no TX Status frame is given.

Status 5 0x00 = Success
0x01 = No ACK received
0x02 = CCA failure
0x03 = Indirect message unrequested
0x21 = Network ACK failure
0x31 = Internal error
0x74 = The payload in the frame was larger than allowed

Notes:

n A status of 0x01 occurs when all MAC and Application-Layer retries have expired and no ACK is
received.

n If the transmitter sends an outgoing transmission as a broadcast (destination address =
0x000000000000FFFF), status 0x01 and 0x21 will never be returned because broadcasts are
sent unacknowledged.

Example
The following example shows a successful status received.

Frame data fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x03

Frame descriptions TX Status frame - 0x89

Digi XBee3® 802.15.4 RF Module User Guide 205

Frame data fields Offset Example

Frame type 3 0x89

Frame ID 4 0x01

Status 5 0x00

Checksum 6 0x75

Frame descriptions Modem Status frame - 0x8A

Digi XBee3® 802.15.4 RF Module User Guide 206

Modem Status frame - 0x8A

Description
Devices send the status messages in this frame in response to specific conditions.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data
fields Offset Description

Frame type 3 0x8A

Status 4 0x00 Hardware reset
0x01 Watchdog timer reset
0x02 = End device successfully associated with a coordinator
0x03 = End device disassociated from coordinator or coordinator failed to
form a new network
0x06 = End device successfully associated with a coordinator
0x0D Input voltage is too high, which prevents transmissions
0x3B = Secure session successfully established
0x3C = Secure session ended
0x3D = Secure session authentication failed

Example
When a device powers up, it returns the following API frame.

Frame data fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 LSB 2 0x02

Frame type 3 0x8A

Status 4 0x00

Checksum 5 0x75

Frame descriptions Transmit Status frame - 0x8B

Digi XBee3® 802.15.4 RF Module User Guide 207

Transmit Status frame - 0x8B

Description
When a Transmit Request (0x10, 0x11) completes, the device sends an 0x8B Transmit Status message
out of the serial interface. This message indicates if the Transmit Request was successful or if it failed.

Note Broadcast transmissions are not acknowledged and always return a status of 0x00, even if the
delivery failed.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data
fields Offset Description

Frame type 3 0x8B

Frame ID 4 The Frame ID of the response will be the same value that was used in the
originating Tx request.

16-bit
destination
address

5 The 16-bit Network Address where the packet was delivered (if
successful). If not successful, this address is 0xFFFD (destination address
unknown).6

Transmit retry
count

7 The number of application transmission retries that occur.

Delivery
status

8 0x00 = Success
0x01 = MAC ACK Failure
0x02 = CCA failure
0x03 = Indirect message unrequested
0x21 = Network ACK Failure
0x31 = Internal resource error
0x74 = Data payload too large

Reserved 9

Example
In the following example, the destination device reports a successful unicast data transmission. The
outgoing Transmit Request that this response frame came from uses Frame ID of 0x47.

Frame Fields Offset Example

Start delimiter 0 0x7E

Frame descriptions Transmit Status frame - 0x8B

Digi XBee3® 802.15.4 RF Module User Guide 208

Frame Fields Offset Example

Length MSB 1 0x00

LSB 2 0x07

Frame type 3 0x8B

Frame ID 4 0x47

Reserved 5 0xFF

6 0xFE

Transmit retry count 7 0x00

Delivery status 8 0x00

Reserved 9 0x02

Checksum 10 0x2E

Frame descriptions Receive Packet frame - 0x90

Digi XBee3® 802.15.4 RF Module User Guide 209

Receive Packet frame - 0x90

Description
When a device configured with a standard API Rx Indicator (AO (API Output Options) = 0) receives an
RF data packet, it sends it out the serial interface using this message type.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data fields Offset Description

Frame type 3 0x90

64-bit source address 4-11 The sender's 64-bit address. MSB first, LSB last.

Reserved 12-13 16-bit source address.

Receive options 14 Bit Interpretation

0 Reserved

1 Broadcast packet

2 Packet was broadcast across all PANs.

3 - 7 Reserved

Received data 15 - n The RF data the device receives.

Example
In the following example, a device with a 64-bit address of 0x0013A200 40522BAA sends a unicast
data transmission to a remote device with payload RxData. If AO = 0 on the receiving device, it sends
the following frame out its serial interface.

Frame data fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x12

Frame type 3 0x90

Frame descriptions Receive Packet frame - 0x90

Digi XBee3® 802.15.4 RF Module User Guide 210

Frame data fields Offset Example

64-bit source address
MSB 4 0x00

5 0x13

6 0xA2

7 0x00

8 0x40

9 0x52

10 0x2B

LSB 11 0xAA

Reserved 12 0xFF

13 0xFE

Receive options 14 0x01

Received data 15 0x52

16 0x78

17 0x44

18 0x61

19 0x74

20 0x61

Checksum 21 0x11

Frame descriptions Explicit Rx Indicator frame - 0x91

Digi XBee3® 802.15.4 RF Module User Guide 211

Explicit Rx Indicator frame - 0x91

Description
When a device configured with explicit API Rx Indicator (AO (API Output Options) = 1) receives an RF
packet, it sends it out the serial interface using this message type.
The Cluster ID and endpoints must be used to identify the type of transaction that occurred.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data fields Offset Description

Frame type 3 0x91

64-bit source
address

4-11 MSB first, LSB last. The sender's 64-bit address.

Reserved 12-13 16-bit source address.

Source endpoint 14 Endpoint of the source that initiates transmission.

Destination endpoint 15 Endpoint of the destination where the message is addressed.

Cluster ID 16-17 The Cluster ID where the frame is addressed.

Profile ID 18-19 The Profile ID where the fame is addressed.

Receive options 14 Bit Interpretation

0 Reserved

1 Broadcast packet

2 Packet was broadcast across all
PANs.

3 - 7 Reserved

Received data 21-n Received RF data.

Example
In the following example, a device with a 64-bit address of 0x0013A200 40522BAA sends a broadcast
data transmission to a remote device with payload RxData.
If a device sends the transmission:

n With source and destination endpoints of 0xE0
n Cluster ID = 0x2211
n Profile ID = 0xC105

Frame descriptions Explicit Rx Indicator frame - 0x91

Digi XBee3® 802.15.4 RF Module User Guide 212

If AO = 1 on the receiving device, it sends the following frame out its serial interface.

Frame data fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x18

Frame type 3 0x91

64-bit source address MSB 4 0x00

5 0x13

6 0xA2

7 0x00

8 0x40

9 0x52

10 0x2B

LSB 11 0xAA

Reserved 12 0xFF

13 0xFE

Source endpoint 14 0xE0

Destination endpoint 15 0xE0

Cluster ID 16 0x22

17 0x11

Profile ID 18 0xC1

19 0x05

Receive options 20 0x02

Received data 21 0x52

22 0x78

23 0x44

24 0x61

25 0x74

26 0x61

Checksum 27 0x68

Frame descriptions I/O Data Sample Rx Indicator frame - 0x92

Digi XBee3® 802.15.4 RF Module User Guide 213

I/O Data Sample Rx Indicator frame - 0x92

Description
When you enable periodic I/O sampling or digital I/O change detection on a remote device, the UART
of the device that receives the sample data sends this frame out.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data fields Offset Description

Frame type 3 0x92

64-bit source
address

4-11 The sender's 64-bit address.

Reserved 12-13 Reserved.

Receive options 14 Bit field:
0x01 = Packet acknowledged
0x02 = Packet is a broadcast packet
Ignore all other bits

Number of samples 15 The number of sample sets included in the payload. Always set to 1.

Digital channel
mask

16-17 Bitmask field that indicates which digital I/O lines on the remote have
sampling enabled, if any.

Analog channel
mask

18 Bitmask field that indicates which analog I/O lines on the remote
have sampling enabled, if any.

Digital samples (if
included)

19-20 If the sample set includes any digital I/O lines (Digital channel mask >
0), these two bytes contain samples for all enabled digital I/O lines.
DIO lines that do not have sampling enabled return 0. Bits in these
two bytes map the same as they do in the Digital channel mask field.

Analog sample 21-n If the sample set includes any analog I/O lines (Analog channel mask >
0), each enabled analog input returns a 2-byte value indicating the A/D
measurement of that input. Analog samples are ordered sequentially
from ADO/DIO0 to AD3/DIO3.

Example
In the following example, the device receives an I/O sample from a device with a 64-bit serial number
of 0x0013A20040522BAA.
The configuration of the transmitting device takes a digital sample of a number of digital I/O lines and
an analog sample of AD1. It reads the digital lines to be 0x0014 and the analog sample value is 0x0225.
The complete example frame is:
7E00 1492 0013 A200 4052 2BAA FFFE 0101 001C 0200 1402 25F9

Frame descriptions I/O Data Sample Rx Indicator frame - 0x92

Digi XBee3® 802.15.4 RF Module User Guide 214

Frame fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x14

64-bit source address MSB 4 0x00

5 0x13

6 0xA2

7 0x00

8 0x40

9 0x52

10 0x2B

LSB 11 0xAA

Reserved MSB 12 0xFF

LSB 13 0xFE

Receive options 14 0x01

Number of samples 15 0x01

Digital channel mask 16 0x00

17 0x1C

Analog channel mask 18 0x02

Digital samples (if included) 19 0x00

20 0x14

Analog sample 21 0x02

22 0x25

Checksum 23 0xF5

Frame descriptions Remote Command Response frame - 0x97

Digi XBee3® 802.15.4 RF Module User Guide 215

Remote Command Response frame - 0x97

Description
If a device receives this frame in response to a Remote Command Request (0x17) frame, the device
sends an AT Command Response (0x97) frame out the serial interface.
Some commands, such as the ND command, may send back multiple frames. For details on the
behavior of ND, see ND (Network Discover).

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data fields Offset Description

Frame type 3 0x97

Frame ID 4 This is the same value that is passed into the request.
The request is a 0x17 frame.

64-bit source (remote)
address

5-12 The long address of the remote device returning this
response.

16-bit source (remote)
address

13 -
14

The short address of the remote device returning this
response.

AT commands 15-16 The name of the command.

Command status 17 0 = OK
1 = ERROR
2 = Invalid Command
3 = Invalid Parameter
4 = Remote Command Transmission Failed

Command data 18-n The value of the requested register in hexadecimal notation
(non-ASCII).

BLE Unlock Response frame - 0xAC

Description
The XBee3 802.15.4 RF Module uses BLE Unlock API frame - 0x2C to authenticate a connection on the
Bluetooth interface and unlock the processing of AT command frames. This frame is used in
conjunction with the Response (0xAC) frame.
For details, see BLE Unlock API frame - 0x2C.

User Data Relay Output - 0xAD

Over-the-air firmware/filesystem upgrade process
for 802.15.4

OTA upgrade image file formats 217
Storage 218
ZCL OTAmessaging 218
ZCLmessage output 219
Image Notify 219
Create the Image Notify request 220
Query Next Image request 221
Query Next Image response 223
Image Block request 225
Image Block response 227
Upgrade End request 230
Upgrade End response 231
OTA error handling 234

Digi XBee3® 802.15.4 RF Module User Guide 216

Over-the-air firmware/filesystem upgrade process for 802.15.4 OTA upgrade image file formats

Digi XBee3® 802.15.4 RF Module User Guide 217

OTA upgrade image file formats

OTA/OTB file
The .ota file extension represents a file which contains an OTA firmware upgrade image. The .otb file
extension represents a file which contains an OTA combined upgrade image containing both the
bootloader and the firmware. However, the way the XBee3 802.15.4 RF Module processes both the
files remain the same.

fs.ota file
The .fs.ota file extension represents an over-the-air MicroPython file system upgrade image. The
XBee3 802.15.4 RF Module processes these files differently as compared to OTA/OTB files.
The over-the-air file system upgrade process is explained in detail in OTA file system upgrades.

The OTA header
The OTA firmware uses a specific firmware file with a .ota extension. We recommend parsing the OTA
header from the OTA file first to obtain the firmware version, manufacturer code, image type and the
size of the GBL file. These parameters are required to generate the rest of the OTA firmware upgrade
messages.

Note All fields in the OTA header with the exception of the OTA Header String are in little-endian
format.

The format of the OTA header is:

Bytes Field name Description

4 OTA upgrade file
identifier

Has to match 0x0BEEF11E in little endian. If it is not, then the OTA file
is not a valid upgrade file.

2 OTA Header version 0x0001

2 OTA Header length Length of the OTA Header.

2 OTA Header Field
control

Bit mask that indicates if additional information is included in the
image. (Read the Security Credential Version in this table).

2 Manufacturer Code 0x101E

2 Image Type 0x0000 - OTA/OTB file
0x0100 - OTA file system image

4 File Version The version of the firmware upgrade image.

2 Stack Version This is set to 2 by default.

32 OTA Header String Usually contains the Firmware image name followed by 0xFFs. For
example, FFFFFFFFFFFFFFFlbg.10F3_42MD_3BX which is XB3_DM24-
3F01.gblFFFFFFFFFFFFFFF in little endian

4 Image Size Contains the size of the .gbl file for the firmware.

Over-the-air firmware/filesystem upgrade process for 802.15.4 Storage

Digi XBee3® 802.15.4 RF Module User Guide 218

Bytes Field name Description

0/1 Security Credential
version

If bit 0 of the OTA Header Field Control is set to 1, this indicates the
security credential version type that the client is required to have,
before it will install the image (set to 2).

0/8 Upgrade File
Destination

If bit 1 of the OTA Header Field Control is set to 1, this indicates that
this OTA file contains security credential/certificate 577 data or other
type of information that is specific to a particular device. Currently,
we do not use this feature.

0/2 Hardware/Software
Compatibility

If bit 2 of the OTA Header Field Control is set to 1.

For OTA firmware update images, the file version field contains additional hardware/software
compatibility information. We recommend that if you intend to perform an OTA update, you use the
OTA header extracted from the file so that you can avoid undesired behavior.

Hardware/software compatibility
The Hardware Software Compatibility number ensures that an incompatible firmware is not flashed
on to the XBee3 802.15.4 RF Module. To obtain this value, query %C (Hardware/Software
Compatibility) on the target device. You can successfully update the device to a firmware if, and only if,
the value of %C of the image is greater than or equal to the value returned by the device when you
query%C.

Parse the image blocks
To parse the image blocks:

1. Divide the contents of the underlying .gbl file into 48 byte blocks for encrypted networks and 56
byte blocks for unencrypted networks

2. Create Image Block Requests around the image blocks; see Image Block request.

Note The .gbl file is placed at an offset of 75 bytes and so it is important to start parsing the image
from that point in the file.

The Image Block size for 802.15.4 is 64 bytes for both encrypted and non-encrypted networks.

Storage
The OTA firmware image blocks are received and stored in a separate internal flash slot that is
allotted exclusively for this purpose. Once all the image bytes are written to the slot, the new image
must be validated by the current application before it can be used.
If the new image is deemed invalid, the running 802.15.4 firmware rejects the image and continues
operating with the current, valid application.

ZCL OTA messaging
The following figure provides the messaging sequence between the Server (updater node) and the
Client (target node).

Over-the-air firmware/filesystem upgrade process for 802.15.4 ZCL message output

Digi XBee3® 802.15.4 RF Module User Guide 219

ZCL message output
By default ZCLmessages are not printed to the UART on the client. To see these messages, set AZ
(Extended API Options) to 2. ZCLmessages received by the server are always printed to the UART.

Image Notify
The server sends the Image Notify message to the client informing the device of the presence of an
update image. The Image Notify message is sent when the upgrade process is initiated from the
server.

Over-the-air firmware/filesystem upgrade process for 802.15.4 Create the Image Notify request

Digi XBee3® 802.15.4 RF Module User Guide 220

Create the Image Notify request
The Image Notify Request is an explicit transmit frame (0x11 type) passed into the server with the
following information:

Frame data fields Offset Example Comments

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x21

Frame Type 3 0x11

Frame ID 4 0x01

64-bit destination address MSB 5 0x00

6 0x13

7 0xA2

8 0xFE

9 0x00

10 0x00

11 0x00

LSB
12

0x03

16-bit destination address MSB
13

0x28

LSB
14

0x2F

Source Endpoint 15 0xE8

Destination Endpoint 16 0xE8

Cluster ID MSB
17

0x00

LSB
18

0x19

Profile ID MSB
19

0xC1

LSB
20

0x05

Broadcast radius 21 0x00

Transmit options 22 0x00

Over-the-air firmware/filesystem upgrade process for 802.15.4 Query Next Image request

Digi XBee3® 802.15.4 RF Module User Guide 221

Frame data fields Offset Example Comments

Data
payload

ZCL
frame
header

Frame control 23 0x09

Transaction
sequence
number

24 0x01

ZCL
payload

Command ID 25 0x00 Image Notify Command ID

Payload type 26 0x03 Contains Jitter, Image Type, Firmware
Version

Query jitter 27 0x00

Manufacturer
ID

LSB
28

0x1E Digi's Manufacturer ID in Little Endian

MSB
29

0x10

Image type LSB
30

0x00 0x0000 - OTA/OTB file
0x0100 - OTA file system image

MSB
31

0x00

Firmware
version

LSB
32

0x01 Firmware version of the new update file in
Little Endian. In this example, the version is
0x1001

33 0x10

34 0x00

MSB
35

0x00

Checksum 36 0xE5

Query Next Image request
The client device sends the Query Next Image request message to the server to indicate it is ready to
receive a firmware image and is sent as a response to an Image Notify message. The client sends
information about the existing firmware version as a part of this message. The server emits the
following frame after receiving the request from the client:

Frame data fields Offset Example Comments

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x1E

Frame Type 3 0x91

Over-the-air firmware/filesystem upgrade process for 802.15.4 Query Next Image request

Digi XBee3® 802.15.4 RF Module User Guide 222

Frame data fields Offset Example Comments

64-bit source address MSB 4 0x00

5 0x13

6 0xA2

7 0xFE

8 0x00

9 0x00

10 0x00

LSB
11

0x03

16-bit source address MSB
12

0x28

LSB
13

0x2F

Source Endpoint 14 0xE8

Destination Endpoint 15 0xE8

Cluster ID MSB
16

0x00

LSB
17

0x19

Profile ID MSB
18

0xC1

LSB
19

0x05

Receive options 20 0x01

Data
payload

ZCL frame
header

Frame control 21 0x01

Transaction sequence
number

22 0x00

Over-the-air firmware/filesystem upgrade process for 802.15.4 Query Next Image response

Digi XBee3® 802.15.4 RF Module User Guide 223

Frame data fields Offset Example Comments

ZCL payload Command ID 23 0x01 Query Next Image
request

Field control 24 0x00

Manufacturer ID LSB
25

0x1E

MSB
26

0x10

Image type LSB
27

0x00

MSB
28

0x00

Firmware version LSB
29

0x00

30 0x10

31 0x00

MSB
32

0x00

Checksum 33 0x71

Query Next Image response
The server obtains the information sent by the Client in the Query Next Image request and
determines if it has a suitable image for the client. It then sends a Query Next Image response with
one of the following status messages as appropriate:

n 0x00 - SUCCESS: The server is authorized to upgrade the client with the image.
n 0x98 - NO_IMAGE_AVAILABLE: The server is authorized to update the client but does not have a

new OTA update image available.
n 0x7E - NOT_AUTHORIZED: The server is not authorized to update the client.

Frame data fields Offset Example Comments

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x24

Frame Type 3 0x11

Frame ID 4 0x01

Over-the-air firmware/filesystem upgrade process for 802.15.4 Query Next Image response

Digi XBee3® 802.15.4 RF Module User Guide 224

Frame data fields Offset Example Comments

64-bit destination address MSB 5 0x00

6 0x13

7 0xA2

8 0xFE

9 0x00

10 0x00

11 0x00

LSB
12

0x03

16-bit destination address MSB
13

0x28

LSB
14

0x2F

Source Endpoint 15 0xE8

Destination Endpoint 16 0xE8

Cluster ID MSB
17

0x00

LSB
18

0x19

Profile ID MSB
19

0xC1

LSB
20

0x05

Broadcast radius 21 0x00

Transmit options 22 0x00

Over-the-air firmware/filesystem upgrade process for 802.15.4 Image Block request

Digi XBee3® 802.15.4 RF Module User Guide 225

Frame data fields Offset Example Comments

Data
payload

ZCL
frame
header

Frame control 23 0x09

Transaction
sequence
number

24 0x01

ZCL
payload

Command ID 25 0x02 Query Next Image Response

Status 26 0x00 Success = 0x00
No Image Available = 0x98
Not Authorized = 0x7E

Manufacturer
ID

LSB
27

0x1E

MSB
28

0x10

Image type LSB
29

0x00 0x0000 - OTA/OTB file
0x0100 - OTA file system image

MSB
30

0x00

Firmware
version

LSB
31

0x01 Firmware version of the new update file in
Little Endian. In this example, the version is
0x1001

32 0x10

33 0x00

MSB
34

0x00

Image Size LSB
35

0x2E

36 0xF3

37 0x02

MSB
38

0x00

Checksum 39 0xE5

Image Block request
The Client generates Image Block requests to request the server for bytes of the OTA firmware
image. Each image block is 64 byte long. The client also sends the file offset as a way to keep the
synchronization of every block intact.
The Image Block requests are repeated by the client until all the blocks of the image are successfully
obtained. The size of the OTA upgrade image is usually obtained by the client in the Query Next Image
response message and hence it knows the exact number of Image Block requests it needs to send.

Over-the-air firmware/filesystem upgrade process for 802.15.4 Image Block request

Digi XBee3® 802.15.4 RF Module User Guide 226

Frame data fields Offset Example Comments

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x1E

Frame Type 3 0x91

64-bit source address MSB 4 0x00

5 0x13

6 0xA2

7 0xFE

8 0x00

9 0x00

10 0x00

LSB
11

0x03

16-bit source address MSB
12

0x28

LSB
13

0x2F

Source Endpoint 14 0xE8

Destination Endpoint 15 0xE8

Cluster ID MSB
16

0x00

LSB
17

0x19

Profile ID MSB
18

0xC1

LSB
19

0x05

Receive options 20 0x01

Over-the-air firmware/filesystem upgrade process for 802.15.4 Image Block response

Digi XBee3® 802.15.4 RF Module User Guide 227

Frame data fields Offset Example Comments

Data
payload

ZCL
frame
header

Frame
control

21 0x01

Transaction
sequence
number

22 0x01

ZCL
payload

Command ID 23 0x03 Image Block Request

Field control 24 0x00

Manufacturer
ID

LSB
25

0x1E

MSB
26

0x10

Image type LSB
27

0x00 0x0000 - OTA/OTB file
0x0100 - OTA file system image

MSB
28

0x00

Firmware
version

LSB
29

0x01

30 0x10

31 0x00

MSB
32

0x00

File Offset LSB
33

0x00 0x0 for the first request.
Offset by multiples of Image Block size. For
example, 0x00000000 for the first request,
0x00000040, 0x00000080 and so on.34 0x00

35 0x00

LSB
36

0x00

Image Block
Size

37 0x40

Checksum 38 0x2D

Image Block response
The server generates an Image Block response upon receiving an Image Block request command. It
responds with a SUCCESS status on being able to retrieve the data for the client. The server uses the
file offset sent by the client to determine the location of the requested data within the OTA upgrade
image.
If you wish to cancel the update process, send an ABORT (0x95) status.

Over-the-air firmware/filesystem upgrade process for 802.15.4 Image Block response

Digi XBee3® 802.15.4 RF Module User Guide 228

Frame data fields Offset Example Comments

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x65

Frame Type 3 0x11

Frame ID 4 0x01

64-bit destination address MSB 5 0x00

6 0x13

7 0xA2

8 0xFE

9 0x00

10 0x00

11 0x00

LSB
12

0x03

16-bit destination address MSB
13

0x28

LSB
14

0x2F

Source Endpoint 15 0xE8

Destination Endpoint 16 0xE8

Cluster ID MSB
17

0x00

LSB
18

0x19

Profile ID MSB
19

0xC1

LSB
20

0x05

Broadcast radius 21 0x00

Transmit options 22 0x00

Over-the-air firmware/filesystem upgrade process for 802.15.4 Image Block response

Digi XBee3® 802.15.4 RF Module User Guide 229

Frame data fields Offset Example Comments

Data
payload

ZCL frame
header

Frame control 23 0x09

Data
payload

Transaction
sequence number

24 0x02

Data
payload

ZCL
payload

Command ID 25 0x05 Image Block Response

Data
payload

ZCL
payload

Status 26 0x00 Success = 0x00
Abort = 0x95

Data
payload

ZCL
payload

Manufacturer ID LSB
27

0x1E

Data
payload

ZCL
payload

MSB
28

0x10

Data
payload

ZCL
payload

Image type LSB
29

0x00 0x0000 - OTA/OTB file
0x0100 - OTA file system image

Data
payload

ZCL
payload

MSB
30

0x00

Data
payload

ZCL
payload

Firmware version LSB
31

0x01

Data
payload

ZCL
payload

32 0x10

Data
payload

ZCL
payload

33 0x00

Data
payload

ZCL
payload

MSB
34

0x00

Data
payload

ZCL
payload

File Offset LSB
35

0x00

Data
payload

ZCL
payload

36 0x00

Data
payload

ZCL
payload

37 0x00

Data
payload

ZCL
payload

MSB
38

0x00

Data
payload

ZCL
payload

Image Block Size 39 0x40 64 byte blocks

Data
payload

ZCL
payload

Image Block Data 40-
104

0xEB-
0x00

An image block of the size
mentioned in Image Block Size

Checksum 106 0x4E

Over-the-air firmware/filesystem upgrade process for 802.15.4 Upgrade End request

Digi XBee3® 802.15.4 RF Module User Guide 230

Upgrade End request
The Upgrade End request is generated by the client after it verifies the received firmware image to
ensure its integrity and validity. If the image fails any integrity checks, the client sends an Upgrade
End request command to the upgrade server with INVALID_IMAGE as the status. If the image passes
all integrity checks, the client sends an Upgrade End request command to the upgrade server with
SUCCESS as the status.

Frame data fields Offset Example Comments

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x1E

Frame Type 3 0x91

64-bit source address MSB 4 0x00

5 0x13

6 0xA2

7 0xFE

8 0x00

9 0x00

10 0x00

LSB
11

0x03

16-bit source address MSB
12

0x28

LSB
13

0x2F

Source Endpoint 14 0xE8

Destination Endpoint 15 0xE8

Cluster ID MSB
16

0x00

LSB
17

0x19

Profile ID MSB
18

0xC1

LSB
19

0x05

Receive options 20 0x01

Over-the-air firmware/filesystem upgrade process for 802.15.4 Upgrade End response

Digi XBee3® 802.15.4 RF Module User Guide 231

Frame data fields Offset Example Comments

Data
payload

ZCL frame
header

Frame control 21 0x01

Transaction sequence
number

22 0x30

ZCL payload Command ID 23 0x06 Upgrade End Request

Status 24 0x00 Success = 0x00
Invalid Image = 0x96
Abort = 0x95
Require More Image =
0x99

Manufacturer ID LSB
25

0x1E

MSB
26

0x10

Image type LSB
27

0x00 0x0000 - OTA/OTB file
0x0100 - OTA file system
image

MSB
28

0x00

Firmware version LSB
29

0x01

30 0x10

31 0x00

MSB
32

0x00

Checksum 38 0x3B

Upgrade End response
If the server receives an Upgrade End request with a SUCCESS status, it generates an Upgrade End
response along with the time at which the device should upgrade to the new image.

Frame data fields Offset Example Comments

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x24

Frame Type 3 0x11

Frame ID 4 0x01

Over-the-air firmware/filesystem upgrade process for 802.15.4 Upgrade End response

Digi XBee3® 802.15.4 RF Module User Guide 232

Frame data fields Offset Example Comments

64-bit destination address MSB 5 0x00

6 0x13

7 0xA2

8 0xFE

9 0x00

10 0x00

11 0x00

LSB
12

0x03

16-bit destination address MSB
13

0x28

LSB
14

0x2F

Source Endpoint 15 0xE8

Destination Endpoint 16 0xE8

Cluster ID MSB
17

0x00

LSB
18

0x19

Profile ID MSB
19

0xC1

LSB
20

0x05

Broadcast radius 21 0x00

Transmit options 22 0x00

Over-the-air firmware/filesystem upgrade process for 802.15.4 Upgrade End response

Digi XBee3® 802.15.4 RF Module User Guide 233

Frame data fields Offset Example Comments

Data
payload

ZCL frame
header

Frame control 23 0x09

Transaction sequence
number

24 0x01

ZCL payload Command ID 25 0x07 Upgrade End response

Manufacturer ID LSB
26

0x1E

MSB
27

0x10

Image type LSB
28

0x00 0x0000 - OTA/OTB file
0x0100 - OTA file system
image

MSB
29

0x00

Firmware version LSB
30

0x01

31 0x10

32 0x00

MSB
33

0x00

Current Time LSB
34

0xF0 32 bit unsigned integer
Seconds since Epoch

35 0x1A

36 0x53

MSB
37

0x21

Upgrade Time LSB38 0x00

39 0x1B

40 0x53

MSB
41

0x21

Checksum 38 0xE5

Over-the-air firmware/filesystem upgrade process for 802.15.4 OTA error handling

Digi XBee3® 802.15.4 RF Module User Guide 234

OTA error handling

ZCL OTA status code Value Description

SUCCESS 0x00 Successful operation

ABORT 0x95 Failed when client or server decides to abort the upgrade process

NOT_AUTHORIZED 0x7E Server is not authorized to upgrade the client

INVALID_IMAGE 0x96 Invalid OTA upgrade image. For example, the image failed
signature validation or CRC.

WAIT_FOR_DATA 0x97 Server does not have data block available yet

NO_IMAGE_AVAILABLE 0x98 No OTA upgrade image available for a particular client

MALFORMED_
COMMAND

0x80 The command received is badly formatted or has incorrect
parameters

UNSUP_CLUSTER_
COMMAND

0x81 Such command is not supported on the device

REQUIRE_MORE_
IMAGE

0x99 The client still requires more OTA upgrade image files in order to
successfully upgrade

Default response commands
The OTA framework has a command ID 0xB reserved for error messages that are sent by the target
device. Default response commands are transmitted by the target device by wrapping the ZCL
payload in a Explicit Addressing Command frame - 0x11. The table below shows the ZCL Payload
contents.

Note This is an example for a default response that has been received by an OTA source device. You
can see that it is an Explicit Rx Indicator frame - 0x91.

Start Delimiter 8 7E

Length 16 00 17

Frame Type 8 91

Source Address 64 FF FF FF FF FF FF FF FF

Source Address 16 FF FF

Source Endpoint 8 E8

Destination Endpoint 8 E8

Cluster ID 16 00 19

Profile ID 16 C1 05

Over-the-air firmware/filesystem upgrade process for 802.15.4 OTA error handling

Digi XBee3® 802.15.4 RF Module User Guide 235

Receive Options 8 C1

RF Data (ZCL payload. Hex In Little Endian) Frame Control 00

Sequence Number 00

Command ID 0B

Erring Command 02

Status 8A

Checksum F2

The example above reports an error on the Query Next Image Response(Erring Command: 0x02)
command informing the server that there is an attempt to update to the same firmware version as
the one that is running on the target radio (Status : 0x8A).
The following table explains the different error statuses which occur at different stages in the OTA
upgrade process.

Command
ID

ZCL OTA
command Status XCTU message

0x0B
Default
Response

0x02
Query Next
Image
Response

0x80 Incorrect Query Next Image Response Format

0x85 Attempting to upgrade to invalid firmware (Bad Image Type,
Wrong Mfg ID, Wrong HW/SW compatibility(%C))

0x89 Image size is too big

0x8A Please ensure that the image you are attempting to
upgrade has a different version than the current version

0x01 ZCL OTA Message Out of Sequence

0x05
Image Block
Response

0x80 Incorrect Image Block Response Format

0x01 ZCL OTA Message Out of Sequence

0x87 Upgrade File Mismatch

0x08
Upgrade End
Response

0X87 Wrong Upgrade File

When the source device or the server receives a default response frame with a command ID of 0x0B
and the erring command is 0x02 that is, the Query Next Image Response, it means there is
something wrong with the Query Next Image Response sent by the server. Similarly, if the erring
command is 0x05 that is, the Image Block Response, it means there is something wrong with the
Image Block Response sent by the server, and the same applies to Upgrade End Response where
there is an error on the Upgrade End response message sent by the server.

Upgrade End Request error statuses
The status field in the Upgrade End request informs the server of any errors during the download or
verification of the OTA firmware update image on the client. The error codes that could be reported

Over-the-air firmware/filesystem upgrade process for 802.15.4 OTA error handling

Digi XBee3® 802.15.4 RF Module User Guide 236

are:

ZCL OTA Command Status Error Message

0x06
Upgrade End Request

0x94 Client Timed Out

0x96 Invalid OTA Image

0x95 Client Aborted Upgrade

0x05 Storage Erase Failed

0x87 Contact Tech Support (Highly unlikely to occur)

OTA file system upgrades

After an OTA firmware update, all file system data and bundled MicroPython code is erased. To
continue running code, a new file system needs to be sent to the device after the firmware update is
complete. This section contains information on how to update the file system of remote devices over
the air.

OTA file system update process 238
OTA file system updates using XCTU 238
OTA file system updates: OEM 242

Digi XBee3® 802.15.4 RF Module User Guide 237

OTA file system upgrades OTA file system update process

Digi XBee3® 802.15.4 RF Module User Guide 238

OTA file system update process
Since OTA file system updates are signed, remote devices must be configured so that they can
validate incoming updates. To set up a network for OTA file system updates:

1. Generate a public/private Elliptic Curve Digital Signature Algorithm (ECDSA) signing key pair.
2. Using the generated public key, set FK (File System Public Key) on all devices that will receive

OTA file system updates.

Note You cannot set FK remotely. You must either set FK before the XBee3 802.15.4 RF Module is
deployed, or else serial access to the device is needed to set it.

To perform an OTA file system update:

1. On a local device, create a copy of the file system that you want to send over the air.
2. Create an OTA file system image, signed using the private key generated previously.
3. Perform an OTA update using the created OTA file.

Note The local device used to create the file system image must have the same firmware version
installed as the target device or the file system will be rejected. Use VR (Firmware Version) to check
the version number on both the staging and target devices.

You can perform all of these steps automatically through XCTU or manually using other tools.

OTA file system updates using XCTU
Use the following steps to perform a file system update OTA using XCTU:

1. Generate a public/private key pair
2. Set the public key on the XBee3 device
3. Create the OTA file system image
4. Perform the OTA file system update

Generate a public/private key pair
XCTU provides an ECDSA key pair generator that you can use to store a public/private key pair in .pem
files. To access the Generate file system key pair dialog:

1. Open the File System Manager dialog box.
2. Click Keys as shown below.

OTA file system upgrades OTA file system updates using XCTU

Digi XBee3® 802.15.4 RF Module User Guide 239

3. Click Generate in the Generate file system key pair dialog.
4. Save both the keys in a safe location and close the dialog box.

Set the public key on the XBee3 device
1. Open the configuration view of the target device in XCTU and go to the File System category.
2. In the File System Public Key row, click Configure.

OTA file system upgrades OTA file system updates using XCTU

Digi XBee3® 802.15.4 RF Module User Guide 240

3. In the Configure File System Public Key dialog box, click Browse and choose the .pem file
that you saved the public key into. Once this is done, the HEX value of the public key is visible
under the Public key section on the dialog box as shown.

4. Click OK to ensure that the key gets written into the device.

Note This can be only be done locally. XBee3 firmware DOES NOT support remotely setting the file
system public key at this time.

Create the OTA file system image
To create the OTA file system image:

1. Open the File System Manager dialog box.
2. Open a connection on the device that you want to generate the OTA file system image from.
3. Click FS Image.
4. In the Generate a signed file system image window that displays, click Browse and choose

the .pem file that the private key was stored in.
5. Once the path shows up on the Private Key file field, click Save to assign the .fs.ota an

appropriate file name and location.
6. Save the file.

You will be prompted with a File system image successfully saved dialog box if the file was
successfully generated.

OTA file system upgrades OTA file system updates using XCTU

Digi XBee3® 802.15.4 RF Module User Guide 241

Perform the OTA file system update
1. To add the target device, click Discover radios in the same network from the source device.
2. Enter Configuration mode on the remote device.
3. Click the down arrow next to the Update button and choose Update File System.

4. Choose the OTA file system image (.fs.ota) that the target node needs to be updated to.
5. Click Open.

OTA file system upgrades OTA file system updates: OEM

Digi XBee3® 802.15.4 RF Module User Guide 242

Once the file system image is completely transferred andmounted on the remote device, XCTU
informs you that the file system has been updated successfully.

OTA file system updates: OEM
Use the following steps to perform a file system update OTA using OEM tools:

1. Generate a public/private key pair
2. Set the public key on the XBee3 device

OTA file system upgrades OTA file system updates: OEM

Digi XBee3® 802.15.4 RF Module User Guide 243

3. Create the OTA file system image
4. Perform the OTA file system update

Generate a public/private key pair
Generate ECDSA signing keys using secp256r1 curve parameters (also known as prime256v1 or NIST
P-256).
To generate a public/private key pair using OpenSSL, run the following command:

openssl ecparam -name prime256v1 -genkey -outform pem -out keypair.pem

To extract the private key from the key pair generated above:

openssl pkcs8 -topk8 -inform pem -in pair.pem -outform pem -nocrypt -out
private.pem

To extract the public key from the key pair generated above:

openssl ec -in keypair.pem -pubout -out public.pem

Set the public key on the XBee3 device
The public keys generated by XCTU and OpenSSL are stored in *.pem files. These files need to be
parsed to get the value to use when setting FK. To parse a public key file, run:

openssl asn1parse -in public.pem -dump

The command will produce something like the following output:

0:d=0 hl=2 l= 89 cons: SEQUENCE
2:d=1 hl=2 l= 19 cons: SEQUENCE
4:d=2 hl=2 l= 7 prim: OBJECT :id-ecPublicKey
13:d=2 hl=2 l= 8 prim: OBJECT :prime256v1
23:d=1 hl=2 l= 66 prim: BIT STRING

0000 - 00 04 95 50 aa 55 b6 f5-5d 99 4d d8 15 d1 71 57 ...P.U..].M...qW
0010 - 51 80 d5 14 ec 1f 6a 15-51 a2 c4 b8 0f 77 10 8a Q.....j.Q....w..
0020 - 33 a3 80 07 47 40 14 8b-5c a7 4c 78 02 fc 4d 82 3...G@..\.Lx..M.
0030 - 90 4b 39 98 62 a1 1d 97-6e 78 fb 54 62 06 d2 41 .K9.b...nx.Tb..A
0040 - c7 3b

The public key should be 65 bytes long - it is the BIT STRING value at the end, with the leading 00
omitted; in this case:

049550aa55b6f55d994dd815d171575180d514ec1f6a1551a2c4b80f77108a33a380074740148b5ca
74c7802fc4d82904b399862a11d976e78fb546206d241c73b

Create the OTA file system image
You can create a file system image outside of XCTU using any utility that can perform ECDSA signing.
These instructions show how to do so using OpenSSL. To create an OTA file system image, use the
following steps.

Create a staged file system
In order to create a usable file system image, first create a 'staged' copy of the file system you want
to send on a local device.

OTA file system upgrades OTA file system updates: OEM

Digi XBee3® 802.15.4 RF Module User Guide 244

Use the FS command or MicroPython to load all of the files that you want to send onto the local
staging device.

Note The staging device must have the same firmware version installed as the target device or the
file system will be rejected. Use the VR command to check the version number on both the staging
and target devices.

Download the file system image
Run the command ATFS GET /sys/xbfs.bin to download an image of the file system from the staging
device. The file is transferred using the YMODEM protocol. See File system for more information on
downloading files using FS GET.

Pad the file system image
The file system image must be a multiple of 2048 bytes long before it is signed. Using hex editing
software, add 0xFF bytes to the end of the downloaded image until size of the file is a multiple of 2048
(0x800 in hex).

Calculate the image signature
Once the image has been padded to a multiple of 2048 bytes, it is ready to be signed. The ECDSA
signature should be calculated using SHA256 as the hash algorithm.
Assuming a public/private key pair has been generated as described in Generate a public/private key
pair, that the private key is named private.pem, and that the padded image is named xbfs.bin; this
can be done using OpenSSL with the following command:

openssl dgst -sha256 -sign private.pem -binary -out sig.bin xbfs.bin

sig.bin will contain the signature for the image.
Append the calculated signature to the image
The signature should be between 70 and 72 bytes, and it should be appended to the padded image.

Create the OTA file
Put the image into an OTA file that follows the format specified in ZigBee Document 095264r23. The
file should consist of:

n An OTA header
n An upgrade image sub-element tag
n The padded, signed image data

The OTA file must begin with an OTA header. See The OTA header for information on the format of the
header. The image type should be 0x0100 for a file system image upgrade.
The sub-element tag should come before the image data. The sub-element tag follows the format
described in section 6.3.3 of ZigBee Document 095264r23. It consists of 6 bytes: the first 2 bytes are
the tag id and should be set to 0x0000. The next 4 bytes contain the length of the file system image in
little-endian format.

Perform the OTA file system update
The process for performing an OTA file system update is the same as the process for performing an
OTA firmware upgrade, as described in Over-the-air firmware/filesystem upgrade process for

http://www.zigbee.org/wp-content/uploads/2014/11/docs-09-5264-23-00zi-zigbee-ota-upgrade-cluster-specification.pdf
http://www.zigbee.org/wp-content/uploads/2014/11/docs-09-5264-23-00zi-zigbee-ota-upgrade-cluster-specification.pdf

OTA file system upgrades OTA file system updates: OEM

Digi XBee3® 802.15.4 RF Module User Guide 245

802.15.4. Note that the data that goes in the image blocks starts at the beginning of the image data,
after the OTA header and sub-element tag.

	Digi XBee3® 802.15.4 RF Module User Guide
	Applicable firmware and hardware
	Change the firmware protocol
	Regulatory information

	Get started
	Verify kit contents
	Assemble the hardware
	Plug in the XBee3 802.15.4 RF Module
	Unplug an XBee3 802.15.4 RF Module

	Configure the device using XCTU
	Configure remote devices
	Configure the devices for a range test
	Perform a range test
	XBIB-C Micro Mount reference
	XBIB-C SMT reference
	XBIB-CU TH reference
	XBIB-C-GPS reference
	Interface with the XBIB-C-GPS module
	I2C communication
	UART communication
	Run the MicroPython GPS demo

	Get started with MicroPython
	About MicroPython
	MicroPython on the XBee3 802.15.4 RF Module
	Use XCTU to enter the MicroPython environment
	Use the MicroPython Terminal in XCTU
	MicroPython examples
	Example: hello world
	Example: enter MicroPython paste mode
	Example: using the time module
	Example: AT commands using MicroPython
	MicroPython networking and communication examples

	Exit MicroPython mode
	Other terminal programs
	Tera Term for Windows

	Use picocom in Linux
	Micropython help ()

	File system
	Overview of the file system
	Directory structure
	Paths
	Limitations
	XCTU interface

	Get started with BLE
	Enable BLE on the XBee3 802.15.4 RF Module
	Enable BLE and configure the BLE password
	Get the Digi XBee Mobile phone application
	Connect with BLE and configure your XBee3 device

	BLE reference
	BLE advertising behavior and services
	Device Information Service
	XBee API BLE Service
	API Request characteristic
	API Response characteristic

	Configure the XBee3 802.15.4 RF Module
	Software libraries
	Over-the-air (OTA) firmware update
	Custom defaults
	Set custom defaults
	Restore factory defaults
	Limitations

	Custom configuration: Create a new factory default
	Set a custom configuration
	Clear all custom configuration on a device

	XBee bootloader
	Send a firmware image
	XBee Network Assistant
	XBee Multi Programmer

	Modes
	Transparent operating mode
	Serial-to-RF packetization

	API operating mode
	Command mode
	Enter Command mode
	Troubleshooting
	Send AT commands
	Response to AT commands
	Apply command changes
	Make command changes permanent
	Exit Command mode

	Idle mode
	Transmit mode
	Receive mode

	Serial communication
	Serial interface
	Serial receive buffer
	Serial transmit buffer
	UART data flow
	Serial data

	Flow control
	Clear-to-send (CTS) flow control
	RTS flow control

	SPI operation
	SPI communications
	Full duplex operation
	Low power operation
	Select the SPI port
	Force UART operation

	I/O support
	Legacy support
	Mixed network considerations
	Digital I/O support
	Analog I/O support
	Monitor I/O lines
	I/O sample data format
	Legacy data format
	Enhanced data format

	API frame support
	On-demand sampling
	Example: Command mode
	Example: Local AT command in API mode
	Example: Remote AT command in API mode

	Periodic I/O sampling
	Source
	Destination
	Multiple samples per packet
	Example: Remote AT command in API mode

	Digital I/O change detection
	I/O line passing
	Digital line passing
	Example: Digital line passing
	Analog line passing
	Example: Analog line passing

	Output sample data
	Output control
	I/O behavior during sleep
	Digital I/O lines
	Analog and PWM I/O Lines

	Networking
	Networking terms
	MAC Mode configuration
	Clear Channel Assessment (CCA)
	CCA operations

	Retries configuration
	Transmit status based on MAC mode and XBee retries configurations
	Addressing
	Send packets to a specific device in Transparent API mode
	Addressing modes

	Peer-to-peer networks
	Master/slave networks
	End device association
	Coordinator association
	Association indicators
	Modem status messages
	Association indicator status codes

	Direct and indirect transmission
	Configure an indirect messaging coordinator
	Send indirect messages
	Receive indirect messages

	Encryption
	Maximum payload
	Maximum payload rules
	Maximum payload summary tables
	Working with Legacy devices

	Network commissioning and diagnostics
	Remote configuration commands
	Send a remote command
	Apply changes on remote devices
	Remote command responses

	Node discovery
	About node discovery
	Node discovery in compatibility mode
	Directed node discovery
	Directed node discovery in compatibility mode
	Destination Node

	Sleep support
	Sleep modes
	Pin Sleep mode (SM = 1)
	Cyclic Sleep mode (SM = 4)
	Cyclic Sleep with Pin Wake-up mode (SM = 5)
	MicroPython sleep with optional pin wake (SM = 6)

	Sleep parameters
	Sleep pins
	Sleep conditions

	AT commands
	Network and security commands
	CH (Operating Channel)
	ID (Extended PAN ID)
	C8 command
	NI (Node Identifier)
	ND (Network Discover)
	DN (Discover Node)
	NT (Node Discover Timeout)
	NO (Node Discovery Options)
	MM (MAC Mode)
	NP (Maximum Packet Payload Bytes)

	Coordinator/End Device configuration commands
	CE (Coordinator Enable)
	A1 (End Device Association)
	A2 (Coordinator Association)
	SC (Scan Channels)
	DA (Force Disassociation)
	AI (Association Indication)

	802.15.4 Addressing commands
	SH (Serial Number High)
	SL (Serial Number Low)
	MY (16-bit Source Address)
	DH (Destination Address High)
	DL (Destination Address Low)
	RR (XBee Retries)
	TO (Transmit Options)

	Security commands
	EE (Encryption Enable)
	KY (AES Encryption Key)
	FK (File System Public Key)
	DM (Disable Features)

	RF interfacing commands
	PL (TX Power Level)
	PP (Output Power in dBm)
	CA (CCA Threshold)
	RN (Random Delay Slots)
	DB (Last Packet RSSI)

	MAC diagnostics commands
	AS (Active Scan)
	ED (Energy Detect)
	EA (ACK Failures)
	EC (CCA Failures)

	Sleep settings commands
	SM (Sleep Mode)
	SP (Cyclic Sleep Period)
	ST (Time before Sleep)
	DP (Disassociated Cyclic Sleep Period)
	SO (Sleep Options)
	FP (Force Poll)

	UART interface commands
	BD (Interface Data Rate)
	NB (Parity)
	SB (Stop Bits)
	FT command
	RO (Packetization Timeout)
	AP (API Enable)
	AO (API Output Options)
	AZ (Extended API Options)

	Command mode options
	CC (Command Character)
	CT (Command Mode Timeout)
	GT (Guard Times)
	CN (Exit Command mode)

	UART pin configuration commands
	D6 (DIO6/RTS Configuration)
	D7 (DIO7/CTS Configuration)
	P3 (DIO13/UART_DOUT Configuration)
	P4 (DIO14/UART_DIN Configuration)

	SPI interface commands
	P5 (DIO15/SPI_MISO Configuration)
	P6 (DIO16/SPI_MOSI Configuration)
	P7 (DIO17/SPI_SSEL Configuration)
	P8 (DIO18/SPI_CLK Configuration)
	P9 (DIO19/SPI_ATTN Configuration)

	I/O settings commands
	D0 (DIO0/ADC0/Commissioning Configuration)
	CB (Commissioning Button)
	D1 (DIO1/ADC1/TH_SPI_ATTN Configuration)
	D2 (DIO2/ADC2/TH_SPI_CLK Configuration)
	D3 (DIO3/ADC3/TH_SPI_SSEL Configuration)
	D4 (DIO4/TH_SPI_MOSI Configuration)
	D5 (DIO5/Associate Configuration)
	D8 (DIO8/DTR/SLP_Request Configuration)
	D9 (DIO9/ON_SLEEP Configuration)
	P0 (DIO10/RSSI/PWM0 Configuration)
	P1 (DIO11/PWM1 Configuration)
	P2 (DIO12/TH_SPI_MISO Configuration)
	PR (Pull-up/Down Resistor Enable)
	PD (Pull Up/Down Direction)
	M0 (PWM0 Duty Cycle)
	M1 (PWM1 Duty Cycle)
	RP (RSSI PWM Timer)
	LT command

	I/O sampling commands
	IS (I/O Sample)
	IR (Sample Rate)
	IC (DIO Change Detect)
	AV (Analog Voltage Reference)
	IT (Samples before TX)
	IF (Sleep Sample Rate)
	IO (Digital Output Level)

	I/O line passing commands
	IA (I/O Input Address)
	IU (I/O Output Enable)
	T0 (D0 Timeout Timer)
	T1 (D1 Output Timeout Timer)
	T2 (D2 Output Timeout Timer)
	T3 (D3 Output Timeout Timer)
	T4 (D4 Output Timeout Timer)
	T5 (D5 Output Timeout Timer)
	T6 (D6 Output Timeout Timer)
	T7 (D7 Output Timeout Timer)
	T8 (D8 Output Timer)
	T9 (D9 Output Timer)
	Q0 (P0 Output Timer)
	Q1 (P1 Output Timer)
	Q2 (P2 Output Timer)
	PT (PWM Output Timeout)

	Location commands
	LX (Location X)
	LY (Location Y)
	LZ (Location Z)

	Diagnostic commands - firmware/hardware information
	VR (Firmware Version)
	VL (Version Long)
	VH (Bootloader Version)
	HV (Hardware Version)
	%C (Hardware/Software Compatibility)
	%P (Invoke Bootloader)
	%V (Supply Voltage)
	TP (Module Temperature)
	DD (Device Type Identifier)
	CK (Configuration CRC)
	FR (Software Reset)

	MicroPython commands
	PS (Python Startup)
	PY (MicroPython Command)

	File system commands
	FS (File System)
	FK (File System Public Key)

	Memory access commands
	AC (Apply Changes)
	WR (Write)
	RE (Restore Defaults)

	BLE commands
	BL command
	BT command
	$S (SRP Salt)
	$V, $W, $X, $Y commands (SRP Salt verifier)

	Custom default commands
	%F (Set Custom Default)
	!C (Clear Custom Defaults)
	R1 (Restore Factory Defaults)

	Operate in API mode
	API mode overview
	Use the AP command to set the operation mode
	API frame format
	API operation (AP parameter = 1)
	API operation with escaped characters (AP parameter = 2)

	Frame descriptions
	TX Request: 64-bit address frame - 0x00
	TX Request: 16-bit address - 0x01
	AT Command Frame - 0x08
	AT Command - Queue Parameter Value frame - 0x09
	Transmit Request frame - 0x10
	Explicit Addressing Command frame - 0x11
	Remote AT Command Request frame - 0x17
	BLE Unlock API frame - 0x2C
	Example sequence to perform AT Command XBee API frames over BLE

	User Data Relay frame - 0x2D
	RX Packet: 64-bit Address frame - 0x80
	Receive Packet: 16-bit address frame - 0x81
	RX (Receive) Packet: 64-bit address IO frame - 0x82
	RX Packet: 16-bit address I/O frame - 0x83
	AT Command Response frame - 0x88
	TX Status frame - 0x89
	Modem Status frame - 0x8A
	Transmit Status frame - 0x8B
	Receive Packet frame - 0x90
	Explicit Rx Indicator frame - 0x91
	I/O Data Sample Rx Indicator frame - 0x92
	Remote Command Response frame - 0x97
	BLE Unlock Response frame - 0xAC
	User Data Relay Output - 0xAD

	Over-the-air firmware/filesystem upgrade process for 802.15.4
	OTA upgrade image file formats
	OTA/OTB file
	fs.ota file
	The OTA header
	Hardware/software compatibility
	Parse the image blocks

	Storage
	ZCL OTA messaging
	ZCL message output
	Image Notify
	Create the Image Notify request
	Query Next Image request
	Query Next Image response
	Image Block request
	Image Block response
	Upgrade End request
	Upgrade End response
	OTA error handling
	Default response commands
	Upgrade End Request error statuses

	OTA file system upgrades
	OTA file system update process
	OTA file system updates using XCTU
	Generate a public/private key pair
	Set the public key on the XBee3 device
	Create the OTA file system image
	Perform the OTA file system update

	OTA file system updates: OEM
	Generate a public/private key pair
	Set the public key on the XBee3 device
	Create the OTA file system image
	Perform the OTA file system update

