
Digi XBee3® DigiMesh 2.4
RF Module

User Guide

Revision history—90002277

Revision Date Description

A April 2018 Initial release.

B September
2018

Added features for S2C parity.

C April 2019 Added sleep support, file system, OTA file system updates, and several
MicroPython features.

D June 2019 Adding/updating relay frames. Added%P.

Trademarks and copyright
Digi, Digi International, and the Digi logo are trademarks or registered trademarks in the United
States and other countries worldwide. All other trademarks mentioned in this document are the
property of their respective owners.
© 2019 Digi International Inc. All rights reserved.

Disclaimers
Information in this document is subject to change without notice and does not represent a
commitment on the part of Digi International. Digi provides this document “as is,” without warranty of
any kind, expressed or implied, including, but not limited to, the implied warranties of fitness or
merchantability for a particular purpose. Digi may make improvements and/or changes in this manual
or in the product(s) and/or the program(s) described in this manual at any time.

Warranty
To view product warranty information, go to the following website:

www.digi.com/howtobuy/terms

Customer support
Gather support information: Before contacting Digi technical support for help, gather the following
information:
 Product name andmodel
 Product serial number (s)
 Firmware version
 Operating system/browser (if applicable)
 Logs (from time of reported issue)
 Trace (if possible)
 Description of issue
 Steps to reproduce

Digi XBee3® DigiMesh 2.4 RF Module User Guide 2

http://www.digi.com/howtobuy/terms

Contact Digi technical support: Digi offers multiple technical support plans and service packages.
Contact us at +1 952.912.3444 or visit us at www.digi.com/support.

Feedback
To provide feedback on this document, email your comments to

techcomm@digi.com

Include the document title and part number (Digi XBee3® DigiMesh 2.4 RF Module User Guide,
90002277 B) in the subject line of your email.

Digi XBee3® DigiMesh 2.4 RF Module User Guide 3

http://www.digi.com/support
mailto:techcomm@digi.com

Contents

About the XBee3 DigiMesh RF Module
Applicable firmware and hardware 14
Change the firmware protocol 14
Regulatory information 14

Get started
Verify kit contents 16
Assemble the hardware 16

Plug in the XBee3 DigiMesh RF Module 17
Unplug an XBee3 DigiMesh RF Module 18

Configure the device using XCTU 18
Configure remote devices 18
Configure the devices for a range test 19
Perform a range test 20
XBIB-C Micro Mount reference 22
XBIB-C SMT reference 25
XBIB-CU TH reference 27
XBIB-C-GPS reference 29
Interface with the XBIB-C-GPS module 31

I2C communication 32
UART communication 32
Run the MicroPython GPS demo 32

Get started with MicroPython
About MicroPython 35
MicroPython on the XBee3 DigiMesh RF Module 35
Use XCTU to enter the MicroPython environment 35
Use the MicroPython Terminal in XCTU 36
MicroPython examples 36

Example: hello world 36
Example: enter MicroPython paste mode 36
Example: using the time module 37
Example: AT commands using MicroPython 37
MicroPython networking and communication examples 38

Exit MicroPython mode 44
Other terminal programs 45

Tera Term for Windows 45
Use picocom in Linux 46

Digi XBee3® DigiMesh 2.4 RF Module User Guide 4

Digi XBee3® DigiMesh 2.4 RF Module User Guide 5

Micropython help () 47

File system
Overview of the file system 50
Directory structure 50
Paths 50
Limitations 50
XCTU interface 51

Configure the XBee3 DigiMesh RF Module
Software libraries 53
Over-the-air (OTA) firmware update 53
Custom defaults 53

Set custom defaults 53
Restore factory defaults 53
Limitations 53

Custom configuration: Create a new factory default 54
Set a custom configuration 54
Clear all custom configuration on a device 54

XBee bootloader 54
Send a firmware image 55
XBee Network Assistant 55
XBee Multi Programmer 56

Modes
Transparent operating mode 58
API operating mode 58
Commandmode 58

Enter Commandmode 58
Troubleshooting 59
Send AT commands 59
Response to AT commands 59
Apply command changes 60
Make command changes permanent 60
Exit Commandmode 60

Idle mode 60
Transmit mode 60
Receive mode 60

Serial communication
Serial interface 62
Serial receive buffer 62
Serial transmit buffer 62
UART data flow 62

Serial data 63
Flow control 63

Clear-to-send (CTS) flow control 64
RTS flow control 64

Digi XBee3® DigiMesh 2.4 RF Module User Guide 6

SPI operation
SPI communications 66
Full duplex operation 67
Low power operation 67
Select the SPI port 68
Force UART operation 69

I/O support
Digital I/O support 71
Analog I/O support 71
Monitor I/O lines 72
I/O sample data format 73
API frame support 74
On-demand sampling 74
Example: Commandmode 74
Example: Local AT command in API mode 75
Example: Remote AT command in API mode 75
Periodic I/O sampling 76

Source 76
Destination 77

Digital I/O change detection 77
I/O line passing 77
Digital line passing 78
Example: Digital line passing 78
Analog line passing 78
Example: Analog line passing 79
Output sample data 79
Output control 79
I/O behavior during sleep 79

Digital I/O lines 80
Analog and PWM I/O Lines 80

Networking
Network identifiers 82
Operating channels 82
Delivery methods 82

Point-to-multipoint 82
DigiMesh networking 83

Broadcast addressing 84
Unicast addressing 84
Route discovery 84
Routing 85
Routers 85

Repeater/directed broadcast 85
MAC layer 85

Encryption 86
Maximum payload 86

Digi XBee3® DigiMesh 2.4 RF Module User Guide 7

Network commissioning and diagnostics
Local configuration 88
Remote configuration 88

Send a remote command 88
Apply changes on remote devices 88
Remote command response 88

Build aggregate routes 89
DigiMesh routing examples 89
Replace nodes 90
Test links between adjacent devices 90
Trace route option 92
NACK messages 92

RSSI indicators 93
Associate LED 93
The Commissioning Pushbutton 93

Definitions 94
Use the Commissioning Pushbutton 94

Node discovery 95
Discover all the devices on a network 95
Directed node discovery 95
Destination Node 96
Discover devices within RF range 96

Sleep support
Sleepmodes 98

Asynchronous sleepmodes 98
Asynchronous Pin Sleepmode (SM = 1) 98
Asynchronous Cyclic Sleepmode (SM = 4) 98
Asynchronous Cyclic Sleep with Pin Wake-upmode (SM = 5) 99
MicroPython sleep with optional pin wake (SM = 6) 99
Synchronous sleepmodes 99
Synchronous sleep support mode (SM = 7) 99
Synchronous cyclic sleepmode (SM = 8) 100

Sleep parameters 100
Sleep pins 100
Sleep conditions 101
The sleep timer 101
Sleep coordinator sleepmodes in the network 102
Synchronization messages 102
Become a sleep coordinator 104

Set the sleep coordinator option 104
Resolution criteria and selection option 104
Commissioning Pushbutton option 105
Overriding syncs 105
Sleep guard times 105
Auto-early wake-up sleep option 106

Select sleep parameters 106
Start a sleeping synchronous network 107
Add a new node to an existing network 108
Change sleep parameters 108
Rejoin nodes that lose sync 109
Diagnostics 110

Digi XBee3® DigiMesh 2.4 RF Module User Guide 8

Query sleep cycle 110
Sleep status 110
Missed sync messages command 110
Sleep status API messages 110

AT commands
Networking commands 112

CH (Operating Channel) 112
ID (Network ID) 112
CE (Routing / Messaging Mode) 112
C8 (Compatibility Options) 113
NI (Network Identifier) 113
ND (Network Discover) 115
DN (Discover Node) 115
FN (Find Neighbors) 116
NT (Network Discovery Back-off) 117
NO (Network Discovery Options) 117
NP (Maximum Packet Payload Bytes) 117

DigiMesh Addressing commands 118
SH (Serial Number High) 118
SL (Serial Number Low) 118
DH (Destination Address High) 118
DL (Destination Address Low) 118
RR (Unicast Mac Retries) 119
MT (Broadcast Multi-Transmits) 119
TO (Transmit Options) 119
CI (Cluster ID) 120

DigiMesh configuration commands 120
MR (Mesh Unicast Retries) 120
BH (Broadcast Hops) 120
NH (Network Hops) 121
NN (Network Delay Slots) 121
DM (DigiMesh Options) 121
AG (Aggregator Support) 122

Diagnostic commands - addressing timeouts 122
%H (MAC Unicast One Hop Time) 122
%P (Invoke Bootloader) 122
%8 (MAC Broadcast One Hop Time) 123
N? (Network Discovery Timeout) 123

Security commands 123
EE (Encryption Enable) 123
KY (AES Encryption Key) 124

RF interfacing commands 124
PL (TX Power Level) 124
PP (Output Power in dBm) 124
CA (CCA Threshold) 125
DB (Last Packet RSSI) 125

MAC diagnostics commands 125
EA (MAC ACK Failure Count) 125
EC (CCA Failures) 126
BC (Bytes Transmitted) 126
GD (Good Packets Received) 126
TR (Transmission Failure Count) 126
UA (Unicasts Attempted Count) 127

Digi XBee3® DigiMesh 2.4 RF Module User Guide 9

ED (Energy Detect) 127
Sleep settings commands 127

SM (Sleep Mode) 127
SP (Sleep Time) 128
ST (Wake Time) 128
SN (Number of Sleep Periods) 129
WH (Wake Host Delay) 129
SO (Sleep Options) 129

Diagnostic - sleep status/timing commands 130
SS (Sleep Status) 130
OS (Operating Sleep Time) 130
OW (Operating Wake Time) 131
MS (Missed Sync Messages) 131
SQ (Missed Sleep Sync Count) 131

UART interface commands 131
BD (Baud Rate) 131
NB (Parity) 132
SB (Stop Bits) 132
FT (Flow Control Threshold) 133
RO (Packetization Timeout) 133
AP (API Enable) 133
AO (API Options) 134
AZ (Extended API Options) 134

Commandmode options 134
CC (Command Character) 135
CT (Command Mode Timeout) 135
GT (Guard Time) 135
CN (Exit Commandmode) 135

MicroPython commands 136
PS (Python Startup) 136
PY (MicroPython Command) 136

File system commands 137
FS (File System) 137
FK (File System Public Key) 138

UART pin configuration commands 139
D6 (DIO6/RTS Configuration) 139
D7 (DIO7/CTS Configuration) 139
P3 (DIO13/UART_DOUT) 140
P4 (DIO14/UART_DIN Configuration) 140

SPI interface commands 141
P5 (DIO15/SPI_MISO Configuration) 141
P6 (DIO16/SPI_MOSI Configuration) 141
P7 (DIO17/SPI_SSEL Configuration) 142
P8 (DIO18/SPI_CLK Configuration) 142
P9 (DIO19/SPI_ATTN Configuration) 143

I/O settings commands 143
D0 (DIO0/ADC0/Commissioning Configuration) 143
D1 (DIO1/ADC1/TH_SPI_ATTN Configuration) 144
D2 (DIO2/ADC2/TH_SPI_CLK Configuration) 144
D3 (DIO3/ADC3/TH_SPI_SSEL Configuration) 145
D4 (DIO4/TH_SPI_MOSI Configuration) 145
D5 (DIO5/Associate Configuration) 146
D8 (DIO8/DTR/SLP_Request Configuration) 146
D9 (DIO9/ON_SLEEP Configuration) 147
P0 (DIO10/RSSI/PWM0 Configuration) 147

Digi XBee3® DigiMesh 2.4 RF Module User Guide 10

P1 (DIO11/PWM1 Configuration) 148
P2 (DIO12/TH_SPI_MISO Configuration) 148
PR (Pull-up/Down Resistor Enable) 149
PD (Pull Up/Down Direction) 150
IO (Set Digital I/O Lines) 150
M0 (PWM0 Duty Cycle) 150
M1 (PWM1 Duty Cycle) 151
RP command 151
LT command 151
CB (Commissioning Button) 152

I/O sampling commands 152
IS (I/O Sample) 152
IR (Sample Rate) 153
IC (DIO Change Detect) 153
AV (Analog Voltage Reference) 154
IF (Sleep Sample Rate) 154

I/O line passing commands 155
IA (I/O Input Address) 155
IU (Send I/O Sample to Serial Port) 155
T0 (D0 Timeout) 155
T1 (D1 Output Timeout) 155
T2 (D2 Output Timeout) 156
T3 (D3 Output Timeout) 156
T4 (D4 Output Timeout) 156
T5 (D5 Output Timeout) 156
T6 (D6 Output Timeout) 157
T7 (D7 Output Timeout) 157
T8 (D8 Timeout) 157
T9 (D9 Timeout) 157
Q0 (P0 Timeout) 157
Q1 (P1 Timeout) 158
Q2 (P2 Timeout) 158
PT (PWM Output Timeout) 158

Diagnostics – Firmware/Hardware Information 158
VR (Firmware Version) 158
VL (Version Long) 159
VH (Bootloader Version) 159
HV (Hardware Version) 159
%C (Hardware/Software Compatibility) 159
%P (Invoke Bootloader) 159
%V (Supply Voltage) 160
TP (Temperature) 160
DD (Device Type Identifier) 160
CK (Configuration CRC) 160
FR (Software Reset) 161

Memory access commands 161
AC (Apply Changes) 161
WR (Write) 161
RE (Restore Defaults) 161

Custom default commands 162
%F (Set Custom Default) 162
!C (Clear Custom Defaults) 162
R1 (Restore Factory Defaults) 162

Digi XBee3® DigiMesh 2.4 RF Module User Guide 11

Operate in API mode
API mode overview 164
Use the AP command to set the operation mode 164
API frame format 164

API operation (AP parameter = 1) 164
API operation with escaped characters (AP parameter = 2) 165

Frame descriptions
AT Command Frame - 0x08 169
AT Command - Queue Parameter Value frame - 0x09 171
Transmit Request frame - 0x10 173
Explicit Addressing Command frame - 0x11 176
Remote AT Command Request frame - 0x17 179
User Data Relay frame - 0x2D 180

Example 181
AT Command Response frame - 0x88 183
Modem Status frame - 0x8A 185
Transmit Status frame - 0x8B 186
Route Information Packet frame - 0x8D 188
Aggregate Addressing Update frame - 0x8E 191
Receive Packet frame - 0x90 193
Explicit Rx Indicator frame - 0x91 195
I/O Data Sample Rx Indicator frame - 0x92 198
Node Identification Indicator frame - 0x95 200
Remote Command Response frame - 0x97 204
User Data Relay Output - 0xAD 205

Description 205
Format 205
Example 206

Over-the-air firmware/file system upgrade process for DigiMesh 2.4
OTA upgrade image file formats 208

OTA/OTB file 208
fs.ota file 208
The OTA header 208
Hardware/software compatibility 209
Sub-elements and tags 209
Parse the image blocks 210

Storage 210
ZCL OTAmessaging 210
ZCLmessage output 211
Image Notify 211
Create the Image Notify request 212
Query Next Image request 214
Query Next Image response 216
Image Block request 218
Image Block response 220
Upgrade End request 223
Upgrade End response 225
OTA error handling 227

Default response commands 227

Digi XBee3® DigiMesh 2.4 RF Module User Guide 12

Upgrade End Request error statuses 228

OTA file system upgrades
OTA file system update process 231
OTA file system updates using XCTU 231

Generate a public/private key pair 231
Set the public key on the XBee3 device 232
Create the OTA file system image 233
Perform the OTA file system update 234

OTA file system updates: OEM 235
Generate a public/private key pair 236
Set the public key on the XBee3 device 236
Create the OTA file system image 236
Perform the OTA file system update 237

About the XBee3 DigiMesh RF Module

The XBee3 DigiMesh RF Module consists of DigiMesh 2.4 firmware loaded on the XBee3 hardware. This
user guide covers the firmware. For information about XBee3 hardware, see the XBee3 RF Module
Hardware Reference Manual.
Digi XBee3 devices offer the flexibility to switch between multiple frequencies and wireless protocols
as needed. These devices use the DigiMesh networking protocol using a globally deployable 2.4 GHz
transceiver. This peer-to-peer mesh network offers users added network stability through self-
healing, dense network operation, extending the operational life of battery dependent networks and
provides an upgrade path to IEEE 802.15.4 or ZigBee mesh protocols, if desired.
Digi’s XBee3 DigiMesh RF Module is an easy-to-use USB to XBee Wireless Personal Area Network
(WPAN) adapter, providing local connectivity to wireless networks. Simply plug the XBee3 DigiMesh RF
Module into the USB port of a laptop or PC for instant access to an Digi XBee network and its
connected devices. This compact, USB-powered wireless adapter enables local network configuration,
diagnostics or device monitoring.

Applicable firmware and hardware 14
Change the firmware protocol 14
Regulatory information 14

Digi XBee3® DigiMesh 2.4 RF Module User Guide 13

https://www.digi.com/resources/documentation/digidocs/90001543/default.htm
https://www.digi.com/resources/documentation/digidocs/90001543/default.htm

About the XBee3 DigiMesh RF Module Applicable firmware and hardware

Digi XBee3® DigiMesh 2.4 RF Module User Guide 14

Applicable firmware and hardware
This manual supports the following firmware:

n v.30xx DigiMesh

It supports the following hardware:

n XBee3

Change the firmware protocol
You can switch the firmware loaded onto the XBee3 hardware to run any of the following protocols:

n Zigbee
n 802.15.4
n DigiMesh

To change protocols, use the Update firmware feature in XCTU and select the firmware. See the
XCTU User Guide.

Regulatory information
See the Regulatory information section of the XBee3 RF Module Hardware Reference Manual for the
XBee3 hardware's regulatory and certification information.

https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_ts_how-to_update_firmware.htm
https://www.digi.com/resources/documentation/Digidocs/90001543/#containers/cont_certs.htm%3FTocPath%3DRegulatory%2520information|_____0
https://www.digi.com/resources/documentation/digidocs/90001543/default.htm

Get started

Verify kit contents 16
Assemble the hardware 16
Configure the device using XCTU 18
Configure remote devices 18
Configure the devices for a range test 19
Perform a range test 20
XBIB-C Micro Mount reference 22
XBIB-C SMT reference 25
XBIB-CU TH reference 27
XBIB-C-GPS reference 29
Interface with the XBIB-C-GPS module 31

Digi XBee3® DigiMesh 2.4 RF Module User Guide 15

Get started Verify kit contents

Digi XBee3® DigiMesh 2.4 RF Module User Guide 16

Verify kit contents
The XBee3 DigiMesh RF Module development kit contains the following components:

Part

XBee3 Zigbee SMT module (3)

XBee Grove development board (3)

Micro USB cable (3)

Antenna - 2.4 GHz, half-wave dipole, 2.1 dBi, U.FL female, articulating
(3)

XBee stickers

Assemble the hardware
This guide walks you through the steps required to assemble and disassemble the hardware
components of your kit.

n Plug in the XBee3 DigiMesh RF Module
n Unplug an XBee3 DigiMesh RF Module

https://www.digi.com/resources/documentation/Digidocs/90001457-13/

Get started Assemble the hardware

Digi XBee3® DigiMesh 2.4 RF Module User Guide 17

The kit includes several XBee Grove Development Boards. For more information about this hardware,
see the XBee Grove Development Board documentation.

Plug in the XBee3 DigiMesh RF Module
Follow these steps to connect the XBee devices to the boards included in the kit:

1. Plug one XBee3 DigiMesh RF Module into the XBee Grove Development Board. When you
connect the development board to a PC for the first time, the PC automatically installs drivers,
which may take a few minutes to complete.

Make sure the board is NOT powered (either by the micro USB or a battery) when
you plug in the XBee module.

For XBee SMT modules, align all XBee pins with the spring header and carefully push the
module until it is hooked to the board.

WARNING! Never insert or remove the XBee device while the power is on!

2. Once the XBee module is plugged into the board (and not before), connect the board to your
computer using the micro USB cables provided.

3. Ensure the loopback jumper is in the UART position.

https://www.digi.com/resources/documentation/Digidocs/90001457-13/

Get started Configure the device using XCTU

Digi XBee3® DigiMesh 2.4 RF Module User Guide 18

Unplug an XBee3 DigiMesh RF Module
To disconnect a device from the XBee Grove Development Board:

1. Disconnect the micro USB cable from the board so it is not powered.
2. Remove the device from the board socket, taking care not to bend any of the pins. The surface

mount device uses spring pins rather than a socket and has a rectangular board cutout
designed to help in removing the XBee3 DigiMesh RF Module.

CAUTION! Make sure the board is not powered when you remove the XBee3 DigiMesh RF
Module.

Configure the device using XCTU
XBee Configuration and Test Utility (XCTU) is a multi-platform program that enables users to interact
with Digi radio frequency (RF) devices through a graphical interface. The application includes built-in
tools that make it easy to set up, configure, and test Digi RF devices.
For instructions on downloading and using XCTU, see the XCTU User Guide.

Configure remote devices
You can communicate with remote devices over the air through a corresponding local device.

Note Using API mode on the local device allows you to send remote API commands.

These instructions show you how to configure a remote device parameter on a remote device.

1. Add two XBee devices to XCTU.
2. Load XBee3 DigiMesh 2.4 firmware onto each device if it is not already loaded. See How to

update the firmware of your modules in the XCTU User Guide for more information.
3. Configure the first device in API mode and name it XBEE_A by configuring the following

parameters:

n ID: 2018
n NI: XBEE_A
n AP: API enabled [1]

4. Configure the second device in either API or Transparent mode, and name it XBEE_B by
configuring the following parameters:

n ID: 2018
n NI: XBEE_B
n AP: 0 or 1

https://www.digi.com/products/xbee-rf-solutions/xctu-software/xctu#productsupport-utilities
http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm
http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_ts_how-to_update_firmware.htm
http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_ts_how-to_update_firmware.htm

Get started Configure the devices for a range test

Digi XBee3® DigiMesh 2.4 RF Module User Guide 19

4. Disconnect XBEE_B from your computer and remove it from XCTU.
5. Connect XBEE_B to a power supply (or laptop or portable battery).

The Radio Modules area should look something like this.

6. Select XBEE_A and click the Discover radio nodes in the same network button .
7. Click Add selected devices in the Discovering remote devices dialog. The discovered remote

device appears below XBEE_A.

9. Select the remote device XBEE_B to display its current configuration settings. If you want to
modify a command parameter, use the radio configuration pane.

10. Click the Write radio settings button to apply any changes and write it to the remote device.

Configure the devices for a range test
1. Add two devices to XCTU.
2. Select the first module and click the Load default firmware settings button.
3. Configure the following parameters:

ID: 2018
NI: LOCAL_DEVICE
AP: API Mode Enabled [1]

4. Click the Write radio settings button.
5. Select the other module and click the Default firmware settings button.
6. Configure the following parameters:

ID: 2018
NI: REMOTE_DEVICE

Get started Perform a range test

Digi XBee3® DigiMesh 2.4 RF Module User Guide 20

7. Click the Write radio settings button.
After you write the radio settings for each device, their names appear in the Radio Modules
area. The Port indicates that the LOCAL_DEVICE is in API mode.

8. Disconnect REMOTE_DEVICE from the computer, remove it from XCTU, and connect it to a
power supply, laptop, or portable battery.

9. Leave LOCAL_DEVICE connected to the computer.

Perform a range test
1. Go to the XCTU display for radio 1.

2. Click to discover remote devices within the same network. The Discover remote devices
dialog appears.

3. Click Add selected devices.

Get started Perform a range test

Digi XBee3® DigiMesh 2.4 RF Module User Guide 21

4. Click and select Range test. The Radio Range Test dialog appears.

5. In the Select the local radio device area, select radio 1. XCTU automatically selects the
Discovered device option, and the Start Range Test button is active.

Get started XBIB-C Micro Mount reference

Digi XBee3® DigiMesh 2.4 RF Module User Guide 22

6. Click to begin the range test.
If the test is running properly, the packets sent should match the packets received. You will
also see the received signal strength indicator (RSSI) update for each radio after each
reception.

7. Move Radio 1 around to see the resulting signal strength at different distances. You can also
test different power levels by reconfiguring the PL (TX Power Level) parameter on both
devices.

XBIB-C Micro Mount reference
This picture shows the XBee-C Micro Mount development board and the table that follows explains the
callouts in the picture.

Note This board is sold separately.

Get started XBIB-C Micro Mount reference

Digi XBee3® DigiMesh 2.4 RF Module User Guide 23

Get started XBIB-C Micro Mount reference

Digi XBee3® DigiMesh 2.4 RF Module User Guide 24

Number Item Description

1 Secondary USB
(USB MICRO B)

Secondary USB Connector for possible future use. Not used.

2 Current
Measure

Large switch controls whether current measure mode is active or
inactive. When inactive, current can freely flow to the VCC pin of the
XBee. When active, the VCC pin of the XBee is disconnected from the 3.3
V line on the development board. This allows current measurement to
be conducted by attaching a current meter across the jumper P10.

3 Battery
Connector

If desired, you can attach a battery to provide power to the
development board. The voltage can range from 2 V to 5 V. The positive
terminal is on the left.

4 USB-C
Connector

Connects to your computer. This is connected to a USB to UART
conversion chip that has the five UART lines passed to the XBee device.
The UART Dip Switch can be used to disconnect these UART lines from
the XBee.

5 LED indicator Red: UART DOUT (modem sending serial/UART data to host)
Green: UART DIN (modem receiving serial/UART data from host)
White: ON/SLP/DIO9
Blue: Connection Status/DIO5
Yellow: RSSI/PWM0/DIO10

6 User Buttons Comm DIO0 Button connects the Commissioning/DIO0 pin on the XBee
Connector through to a 10 Ω resistor to GND when pressed.

RESET Button Connects to the RESET pin on the XBee Connector to GND
when pressed.

7 Breakout
Connector

This 40-pin connector can be used to connect to various XBee pins as
shown on the silkscreen on the bottom of the board.

8 UART Dip
Switch

This dip switch allows the user to disconnect any of the primary UART
lines on the XBee from the USB to UART conversion chip. This allows for
testing on the primary UART lines without the USB to UART conversion
chip interfering. Push Dip switches to the right to disconnect the USB to
UART conversion chip from the XBee.

9 Grove
Connector

This connector can be used to attach I2C enabled devices to the
development board. Note that I2C needs to be available on the XBee in
the board to use this functionality.
Pin 1: I2C_CLK/XBee DIO1
Pin2: I2C_SDA/XBee DIO11
Pin3: VCC
Pin4: GND

10 Temp/Humidity
Sensor

This as a Texas Instruments HDC1080 temperature and humidity
sensor. This part is accessible through I2C. Be sure that the XBee that is
inserted into the development board has I2C if access to this sensor is
desired.

11 XBee Socket This is the socket for the XBee (Micro form factor).

Get started XBIB-C SMT reference

Digi XBee3® DigiMesh 2.4 RF Module User Guide 25

XBIB-C SMT reference
This picture shows the XBee-C SMT development board and the table that follows explains the
callouts in the picture.

Note This board is sold separately.

Get started XBIB-C SMT reference

Digi XBee3® DigiMesh 2.4 RF Module User Guide 26

Number Item Description

1 Secondary USB
(USB MICRO B)

Secondary USB Connector for possible future use. Not used.

2 Current
Measure

Large switch controls whether current measure mode is active or
inactive. When inactive, current can freely flow to the VCC pin of the
XBee. When active, the VCC pin of the XBee is disconnected from the 3.3
V line on the dev board. This allows current measurement to be
conducted by attaching a current meter across the jumper P10.

3 Battery
Connector

If desired, you can attach a battery to provide power to the
development board. The voltage can range from 2 V to 5 V. The positive
terminal is on the left.

4 USB-C
Connector

Connects to your computer. This is connected to a USB to UART
conversion chip that has the five UART lines passed to the XBee. The
UART Dip Switch can be used to disconnect these UART lines from the
XBee.

5 LED indicator Red: UART DOUT (modem sending serial/UART data to host)
Green: UART DIN (modem receiving serial/UART data from host)
White: ON/SLP/DIO9
Blue: Connection Status/DIO5
Yellow: RSSI/PWM0/DIO10

6 User Buttons Comm DIO0 Button connects the Commissioning/DIO0 pin on the XBee
Connector through to a 10 Ω resistor to GND when pressed.

RESET Button Connects to the RESET pin on the XBee Connector to GND
when pressed.

7 Breakout
Connector

This 40-pin connector can be used to connect to various XBee pins as
shown on the silkscreen on the bottom of the board.

8 UART Dip
Switch

This dip switch allows the user to disconnect any of the primary UART
lines on the XBee from the USB to UART conversion chip. This allows for
testing on the primary UART lines without the USB to UART conversion
chip interfering. Push Dip switches to the right to disconnect the USB to
UART conversion chip from the XBee.

9 Grove
Connector

This connector can be used to attach I2C enabled devices to the
development board. Note that I2C needs to be available on the XBee in
the board to use this functionality.
Pin 1: I2C_CLK/XBee DIO1
Pin2: I2C_SDA/XBee DIO11
Pin3: VCC
Pin4: GND

10 Temp/Humidity
Sensor

This as a Texas Instruments HDC1080 temperature and humidity
sensor. This part is accessible through I2C. Be sure that the XBee that is
inserted into the Dev Board has I2C if access to this sensor is desired.

11 XBee Socket This is the socket for the XBee (SMT form factor)

Get started XBIB-CU TH reference

Digi XBee3® DigiMesh 2.4 RF Module User Guide 27

XBIB-CU TH reference
This picture shows the XBee-CU TH development board and the table that follows explains the
callouts in the picture.

Note This board is sold separately.

Get started XBIB-CU TH reference

Digi XBee3® DigiMesh 2.4 RF Module User Guide 28

Number Item Description

1 Secondary USB
(USB MICRO B)
and DIP Switch

Secondary USB Connector for direct programming of modules on some
XBee units. Flip the Dip switches to the right for I2C access to the
board; flip Dip switches to the left to disable I2C access to the board.
The USB_P and USB_N lines are always connected to the XBee,
regardless of Dip switch setting.
This USB port is not designed to power the module or the board. Do not
plug in a USB cable here unless the board is already being powered
through the main USB-C connector. Do not attach a USB cable here if
the Dip switches are pushed to the right.

WARNING! Direct input of USB lines into XBee units or I2C
lines not designed to handle 5V can result in the destruction
of the XBee or I2C components. Could cause fire or serious
injury. Do not plug in a USB cable here if the XBee device is
not designed for it and do not plug in a USB cable here if the
Dip switches are pushed to the right.

2 Current
Measure

Large switch controls whether current measure mode is active or
inactive. When inactive, current can freely flow to the VCC pin of the
XBee. When active, the VCC pin of the XBee is disconnected from the 3.3
V line on the development board. This allows current measurement to
be conducted by attaching a current meter across the jumper P10.

3 Battery
Connector

If desired, a battery can be attached to provide power to the
development board. The voltage can range from 2 V to 5 V. The positive
terminal is on the left.
If the USB-C connector is connected to a computer, the power will be
provided through the USB-C connector and not the battery connector.

4 USB-C
Connector

Connects to your computer and provides the power for the
development board. This is connected to a USB to UART conversion chip
that has the five UART lines passed to the XBee. The UART Dip Switch
can be used to disconnect these UART lines from the XBee.

5 LED indicator Red: UART DOUT (modem sending serial/UART data to host)
Green: UART DIN (modem receiving serial/UART data from host)
White: ON/SLP/DIO9
Blue: Connection Status/DIO5
Yellow: RSSI/PWM0/DIO10

6 User Buttons Comm DIO0 Button connects the Commissioning/DIO0 pin on the XBee
Connector through to a 10 Ω resistor to GND when pressed.

RESET Button Connects to the RESET pin on the XBee Connector to GND
when pressed.

7 Breakout
Connector

This 40 pin connector can be used to connect to various XBee pins as
shown on the silkscreen on the bottom of the board.

Get started XBIB-C-GPS reference

Digi XBee3® DigiMesh 2.4 RF Module User Guide 29

Number Item Description

8 UART Dip
Switch

This dip switch allows the user to disconnect any of the primary UART
lines on the XBee from the USB to UART conversion chip. This allows for
testing on the primary UART lines without the USB to UART conversion
chip interfering. Push Dip switches to the right to disconnect the USB to
UART conversion chip from the XBee.

9 Grove
Connector

This connector can be used to attach I2C enabled devices to the
development board. Note that I2C needs to be available on the XBee in
the board for this functionality to be used.
Pin 1: I2C_CLK/XBee DIO1
Pin2: I2C_SDA/XBee DIO11
Pin3: VCC
Pin4: GND

10 Temp/Humidity
Sensor

This as a Texas Instruments HDC1080 temperature and humidity
sensor. This part is accessible through I2C. Be sure that the XBee that is
inserted into the development board has I2C if access to this sensor is
desired.

11 XBee Socket This is the socket for the XBee (TH form factor).

12 XBee Test
Point Pins

Allows easy access for probes for all 20 XBee TH pins. Pin 1 is shorted to
Pin 1 on the XBee and so on.

XBIB-C-GPS reference
This picture shows the XBIB-C-GPS module and the table that follows explains the callouts in the
picture.

Note This board is sold separately. You must also have purchased an XBIB-C through-hole, surface-
mount, or micro-mount development board.

Note For a demonstration of how to use MicroPython to parse some of the GPS NMEA sentences from
the UART, print them and report them to Digi Remote Manager, see Run the MicroPython GPS demo.

Get started XBIB-C-GPS reference

Digi XBee3® DigiMesh 2.4 RF Module User Guide 30

Get started Interface with the XBIB-C-GPS module

Digi XBee3® DigiMesh 2.4 RF Module User Guide 31

Number Item Description

1 40-pin
header

This header is used to connect the XBIB-C-GPS board to a compatible XBIB
development board. Insert the XBIB-C-GPS module slowly with alternating
pressure on the upper and lower parts of the connector. If added or removed
improperly, the pins on the attached board could bend out of shape.

2 GPS
unit

This is the CAM-M8Q-0-10 module made by u-blox. This is what makes the GPS
measurements. Proper orientation is with the board laying completely flat, with
the module facing towards the sky.

Interface with the XBIB-C-GPS module
The XBee3 DigiMesh RF Module can interface with the XBIB-C-GPS board through the large 40-pin
header. This header is designed to fit into XBIB-C development board. This allows the XBee3 DigiMesh
RF Module in the XBIB-C board to communicate with the XBIB-C-GPS board—provided the XBee device
used has MicroPython capabilities (see this link to determine which devices have MicroPython
capabilities). There are two ways to interface with the XBIB-C-GPS board: through the host board’s
Secondary UART or through the I2C compliant lines.
The following picture shows a typical setup:

https://www.digi.com/resources/documentation/Digidocs/90002219/#reference/r_features.htm%3FTocPath%3D_____2

Get started Interface with the XBIB-C-GPS module

Digi XBee3® DigiMesh 2.4 RF Module User Guide 32

I2C communication
There are two I2C lines connected to the host board through the 40-pin header, SCL and SDA. I2C
communication is performed over an I2C-compliant Display Data Channel. The XBIB-C-GPS module
operates in slave mode. The maximum frequency of the SCL line is 400 kHz. To access data through
the I2C lines, the data must be queried by the connected XBee3 DigiMesh RF Module.
For more information about I2C Operation see the I2C section of the Digi Micro Python Programming
Guide.
For more information on the operation of the XBIB-C-GPS board see the CAM-M8 datasheet. Other
CAM-M8 documentation is located here.

UART communication
There are two UART pins connected from the XBIB-C-GPS to the host board by the 40-pin header: RX
and TX. By default, the UART on the XBIB-C-GPS board is active and sends GPS readings to the
connected device’s secondary UART pins. Readings are transmitted once every second. The baud rate
of the UART is 9600 baud.
For more information about using Micro Python to communicate to the XBIB-C-GPS module, see Class
UART.

Run the MicroPython GPS demo
The Digi MicroPython github repository contains a GPS demo program that parses some of the GPS
NMEA sentences from the UART, prints them and also reports them to Digi Remote Manager.

Note If you are unfamiliar with MicroPython on XBee you should first run some of the tutorials earlier
in this manual to familiarize yourself with the environment. See Get started with MicroPython. For
more detailed information, refer to the Digi MicroPython Programming Guide.

Step 1: Create a Remote Manager developer account
You must have a Remote Manager developer account to be able to use this program. Make sure you
know the user name and password for this account.
If you don't currently have a Remote Manager developer account, you can create a free developer
account.

Step 2: Download or clone the XBee MicroPython repository

1. Navigate to: https://github.com/digidotcom/xbee-micropython/
2. Click Clone or download.
3. You must either clone or download a zip file of the repository. You can use either method.

n Clone: If you are familiar with GIT, follow the standard GIT process to clone the
repository.

n Download
a. Click Download zip to download a zip file of the repository to the download

folder of your choosing.
b. Extract the repository to a location of your choosing on your hard drive.

https://www.digi.com/resources/documentation/Digidocs/90002219/#reference/r_class_i2c.htm%3FTocPath%3DMachine%2520module|Class%2520I2C%253A%2520two-wire%2520serial%2520protocol|_____0
https://www.digi.com/resources/documentation/Digidocs/90002219/#reference/r_class_i2c.htm%3FTocPath%3DMachine%2520module|Class%2520I2C%253A%2520two-wire%2520serial%2520protocol|_____0
https://www.u-blox.com/sites/default/files/CAM-M8-FW3_DataSheet_(UBX-15031574).pdf
https://www.u-blox.com/en/product/cam-m8-series#tab-documentation-resources
https://www.digi.com/resources/documentation/Digidocs/90002219/#reference/r_class_uart.htm%3FTocPath%3DMachine%2520module|Class%2520UART|_____0
https://www.digi.com/resources/documentation/Digidocs/90002219/#reference/r_class_uart.htm%3FTocPath%3DMachine%2520module|Class%2520UART|_____0
https://www.digi.com/resources/documentation/digidocs/90002219/
http://myacct.digi.com/
http://myacct.digi.com/

Get started Interface with the XBIB-C-GPS module

Digi XBee3® DigiMesh 2.4 RF Module User Guide 33

Step 3: Edit the MicroPython file

1. Navigate to the location of the repository zip file that you created in Step 2.
2. Navigate to: samples/gps
3. Open the MicroPython file: gpsdemo1.py

4. Using the editor of your choice, edit the MicroPython file. At the top of the file, enter the user
name and password for your Remote Manager developer account. The correct location is
indicated in the comments in the file.

Step 4: Run the program

1. Rename the file you edited in Step 3 from gpsdemo1.py tomain.py.
2. Copy the renamed file onto your device's root filesystem directory.
3. Copy the following three modules from the locations specified below into your device's /lib

directory:
n From the /lib directory of the Digi xbee-micropython repository: urequest.py and

remotemanager.py

n From the /lib/sensor directory of the Digi xbee-micropython repository: hdc1080.py

Note These modules are required to be able to run the gpsdemo1.py.

4. Open XCTU and use the MicroPython Terminal to run the demo.
5. Type <CTRL>-R from the MicroPython prompt to run the code.

Get started with MicroPython

This user guide provides an overview of how to use MicroPython with the XBee3 DigiMesh RF Module.
For in-depth information andmore complex code examples, refer to the Digi MicroPython
Programming Guide. Continue with this user guide for simple examples to get started using
MicroPython on the XBee3 DigiMesh RF Module.

About MicroPython 35
MicroPython on the XBee3 DigiMesh RF Module 35
Use XCTU to enter the MicroPython environment 35
Use the MicroPython Terminal in XCTU 36
MicroPython examples 36
Exit MicroPython mode 44
Other terminal programs 45
Use picocom in Linux 46
Micropython help () 47

Digi XBee3® DigiMesh 2.4 RF Module User Guide 34

https://www.digi.com/resources/documentation/Digidocs/90002219/
https://www.digi.com/resources/documentation/Digidocs/90002219/

Get started with MicroPython About MicroPython

Digi XBee3® DigiMesh 2.4 RF Module User Guide 35

About MicroPython
MicroPython is an open-source programming language based on Python 3.0, with much of the same
syntax and functionality, but modified to fit on small devices with limited hardware resources, such as
an XBee3 DigiMesh RF Module.
For more information about MicroPython, see www.micropython.org.
For more information about Python, see www.python.org.

MicroPython on the XBee3 DigiMesh RF Module
The XBee3 DigiMesh RF Module has MicroPython running on the device itself. You can access a
MicroPython prompt from the XBee3 DigiMesh RF Module when you install it in an appropriate
development board (XBDB or XBIB), and connect it to a computer via a USB cable.

Note MicroPython is only available through the UART interface and does not work with SPI.

Note MicroPython programming on the device requires firmware version 3002 or newer.

The examples in this user guide assume:

n You have XCTU on your computer. See Configure the device using XCTU.
n You have a serial terminal program installed on your computer. For more information, see Use

the MicroPython Terminal in XCTU. This requires XCTU 6.3.10 or higher.
n You have an XBee3 DigiMesh RF Module installed on an appropriate development board such as

an XBIB-U-DEV or an XBDB-U-ZB.

n The XBee3 DigiMesh RF Module is connected to the computer via a USB cable and XCTU
recognizes it.

Use XCTU to enter the MicroPython environment
To use the XBee3 DigiMesh RF Module in the MicroPython environment:

1. Use XCTU to add the device(s); see Configure the device using XCTU and Add devices to XCTU.
2. The XBee3 DigiMesh RF Module appears as a box in the Radio Modules information panel. Each

module displays identifying information about itself.
3. Click this box to select the device and load its current settings.

Note To ensure that MicroPython is responsive to input, Digi recommends setting the XBee
UART baud rate to 115200 baud. To set the UART baud rate, select 115200 [7] in the BD field
and click the Write button. We strongly recommend using hardware flow control to avoid data
loss, especially when pasting large amounts of code or text. For more information, see UART
flow control.

4. To put the XBee3 DigiMesh RF Module into MicroPython mode, in the AP field select

MicroPython REPL [4] and click the Write button .
5. Note which COM port the XBee3 DigiMesh RF Module is using, because you will need this

information when you use the MicroPython terminal.

https://micropython.org/
https://www.python.org/
https://www.digi.com/products/xbee-rf-solutions/xctu-software/xctu#productsupport-utilities
https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#concept/c_populate_device_list.htm

Get started with MicroPython Use the MicroPython Terminal in XCTU

Digi XBee3® DigiMesh 2.4 RF Module User Guide 36

Use the MicroPython Terminal in XCTU
You can use the MicroPython Terminal to communicate with the XBee3 DigiMesh RF Module when it is
in MicroPython mode.1 This requires XCTU 6.3.10 or higher. To enter MicroPython mode, follow the
steps in Use XCTU to enter the MicroPython environment. To use the MicroPython Terminal:

1. Click the Tools drop-downmenu and select MicroPython Terminal. The terminal window
opens.

2. Click Open to open the Serial Port Configuration window.
3. In the Select the Serial/USB port area, click the COM port that the device uses.
4. Verify that the baud rate and other settings are correct.

5. Click OK. The Open icon changes to Close , indicating that the device is properly connected.

If the >>> prompt appears, you are connected properly. You can now type or paste MicroPython code
in the terminal.

MicroPython examples
This section provides examples of how to use some of the basic functionality of MicroPython with the
XBee3 DigiMesh RF Module.

Example: hello world
1. At the MicroPython >>> prompt, type the Python command: print("Hello, World!")

2. Press Enter to execute the command. The terminal echos back Hello, World!

Example: enter MicroPython paste mode
In the following examples it is helpful to know that MicroPython supports paste mode, where you can
copy a large block of code from this user guide and paste it instead of typing it character by character.
To use paste mode:

1. Copy the code you want to run. For example, copy the following code that is the code from the
"Hello world" example:

print("Hello World")

Note You can easily copy and paste code from the online version of this guide. Use caution with the
PDF version, as it may not maintain essential indentations.

2. In the terminal, at the MicroPython >>> prompt type Ctrl-+E to enter paste mode. The terminal
displays paste mode; Ctrl-C to cancel, Ctrl-D to finish.

3. Right-click in the MicroPython terminal window and click Paste or press Ctrl+Shift+V to paste.
4. The code appears in the terminal occupying one line. Each line starts with its line number and

three "=" symbols. For example, line 1 starts with 1===.

1See Other terminal programs if you do not use the MicroPython Terminal in XCTU.

http://docs.micropython.org/en/latest/pyboard/reference/repl.html#paste-mode
http://www.digi.com/resources/documentation/Digidocs/90002258/

Get started with MicroPython MicroPython examples

Digi XBee3® DigiMesh 2.4 RF Module User Guide 37

5. If the code is correct, press Ctrl+D to run the code; “Hello World” should print.

Note If you want to exit paste mode without running the code, or if the code did not copy
correctly, press Ctrl+C to cancel and return to the normal MicroPython >>> prompt).

Example: using the time module
The time module is used for time-sensitive operations such as introducing a delay in your routine or a
timer.
The following time functions are supported by the XBee3 DigiMesh RF Module:

n ticks_ms() returns the current millisecond counter value. This counter rolls over at
0x40000000.

n ticks_diff() compares the difference between two timestamps in milliseconds.
n sleep() delays operation for a set number of seconds.
n sleep_ms() delays operation for a set number of milliseconds.
n sleep_us() delays operation for a set number of microseconds.

Note The standard time.time() function cannot be used, because this function produces the number
of seconds since the epoch. The XBee3 module lacks a realtime clock and cannot provide any date or
time data.

The following example exercises the various sleep functions and uses ticks_diff() to measure
duration:

import time

start = time.ticks_ms() # Get the value from the millisecond counter

time.sleep(1) # sleep for 1 second
time.sleep_ms(500) # sleep for 500 milliseconds
time.sleep_us(1000) # sleep for 1000 microseconds

delta = time.ticks_diff(time.ticks_ms(), start)

print("Operation took {} ms to execute".format(delta))

Example: AT commands using MicroPython
AT commands control the XBee3 DigiMesh RF Module. The "AT" is an abbreviation for "attention", and
the prefix "AT" notifies the module about the start of a command line. For a list of AT commands that
can be used on the XBee3 DigiMesh RF Module, see AT commands.
MicroPython provides an atcmd() method to process AT commands, similar to how you can use
Commandmode or API frames.
The atcmd() method accepts two parameters:

1. The two character AT command, entered as a string.
2. An optional second parameter used to set the AT command value. If this parameter is not

provided, the AT command is queried instead of being set. This value is an integer, bytes object,
or string, depending on the AT command.

Get started with MicroPython MicroPython examples

Digi XBee3® DigiMesh 2.4 RF Module User Guide 38

Note The xbee.atcmd() method does not support the following AT commands: IS, AS, ED, ND, or DN.

The following is example code that queries and sets a variety of AT commands using xbee.atcmd():

import xbee

Set the NI string of the radio
xbee.atcmd("NI", "XBee3 module")

Configure a destination address using two different data types
xbee.atcmd("DH", 0x0013A200) # Hex
xbee.atcmd("DL", b'\x12\x25\x89\xF5') # Bytes

Read some AT commands and display the value and data type:
print("\nAT command parameter values:")
commands =["DH", "DL", "NI", "CK"]
for cmd in commands:

val = xbee.atcmd(cmd)
print("{}: {:20} of type {}".format(cmd, repr(val), type(val)))

This example code outputs the following:

AT command parameter values:
DH: b'\x00\x13\xa2\x00' of type <class 'bytes'>
DL: b'\x12%\x89\xf5' of type <class 'bytes'>
NI: 'XBee3 module' of type <class 'str'>
CK: 65535 of type <class 'int'>

Note Parameters that store values larger than 16-bits in length are represented as bytes. Python
attempts to print out ASCII characters whenever possible, which can result in some unexpected
output (such as the "%" in the above output). If you want the output from MicroPython to match
XCTU, you can use the following example to convert bytes to hex:

dl_value = xbee.atcmd("DL")
hex_dl_value = hex(int.from_bytes(dl_value, 'big'))

MicroPython networking and communication examples
This section provides networking and communication examples for using MicroPython with the XBee3
DigiMesh RF Module.

DigiMesh networks with MicroPython
For small networks, it is suitable to use MicroPython on every node. However, there are some inherit
limitations that may prevent you from using MicroPython on some heavily trafficked nodes:

n When running MicroPython, any receivedmessages will be stored in a small receive queue. This
queue only has room for 4 packets andmust be regularly read to prevent data loss. For
networks that will be generating a lot of traffic, the data aggregator may need to operate in
API mode in order to capture all incoming data.

For the examples in this section, the devices should be pre-configured with identical network settings
so that RF communication is possible. To follow the upcoming examples, we need to configure a
second XBee3 DigiMesh RF Module to use MicroPython.
XCTU only allows a single MicroPython terminal. We will be running example code on both modules,
which requires a second terminal window.

Get started with MicroPython MicroPython examples

Digi XBee3® DigiMesh 2.4 RF Module User Guide 39

Open a second instance of XCTU, and configure a different XBee3 module for MicroPython following
the steps in Use XCTU to enter the MicroPython environment.

Example: network Discovery using MicroPython
The xbee.discover() method returns an iterator that blocks while waiting for results, similar to
executing an ND request. For more information, see ND (Network Discover).
Each result is a dictionary with fields based on an ND response:

n sender_nwk: 16-bit network address.
n sender_eui64: 8-byte bytes object with EUI-64 address.
n parent_nwk: Set to 0xFFFE on the coordinator and routers; otherwise, this is set to the

network address of the end device's parent.
n node_id: The device's NI value (a string of up to 20 characters, also referred to as Node

Identification).
n node_type: Value of 0, 1 or 2 for coordinator, router, or end device.
n device_type: The device's 32-bit DD value, also referred to as Digi Device Type; this is used to

identify different types of devices or hardware.
n rssi: Relative signal strength indicator (in dBm) of the node discovery request packet received

by the sending node.

Note When printing the dictionary, fields for device_type, sender_nwk and parent_nwk appear in
decimal form. You can use the MicroPython hex() method to print an integer in hexadecimal. Check
the function code for format_eui64 from the Example: communication between two XBee3 DigiMesh
modules topic for code to convert the sender_eui64 field into a hexadecimal string with a colon
between each byte value.

Use the following example code to perform a network discovery:

import xbee, time

Set the network discovery options to include self
xbee.atcmd("NO", 2)
xbee.atcmd("AC")
time.sleep(.5)

Perform Network Discovery and print out the results
print ("Network Discovery in process...")
nodes = list(xbee.discover())
if nodes:

for node in nodes:
print("\nRadio discovered:")
for key, value in node.items():

print("\t{:<12} : {}".format(key, value))

Set NO back to the default value
xbee.atcmd("NO", 0)
xbee.atcmd("AC")

This produces the following output from two discovered nodes:

Radio discovered:
rssi : -63
node_id : Coordinator

Get started with MicroPython MicroPython examples

Digi XBee3® DigiMesh 2.4 RF Module User Guide 40

device_type : 1179648
parent_nwk : 65534
sender_nwk : 0
sender_eui64 : b'\x00\x13\xa2\xff h\x98T'
node_type : 0

Radio discovered:
rssi : -75
node_id : Router
device_type : 1179648
parent_nwk : 65534
sender_nwk : 23125
sender_eui64 : b'\x00\x13\xa2\xffh\x98c&'
node_type : 1

Examples: transmitting data
This section provides examples for transmitting data using MicroPython. These examples assume you
have followed the above examples and the two radios are on the same network.

Example: transmit message
Use the xbee module to transmit a message from the XBee3 Zigbee device. The transmit() function
call consists of the following parameters:

1. The Destination Address, which can be any of the following:
n Integer for 16-bit addressing
n 8-byte bytes object for 64-bit addressing
n Constant xbee.ADDR_BROADCAST to indicate a broadcast destination
n Constant xbee.ADDR_COORDINATOR to indicate the coordinator

2. The Message as a character string.

If the message is sent successfully, transmit() returns None. If the transmission fails due to an ACK
failure or lack of free buffer space on the receiver, the sent packet will be silently discarded.

Example: transmit a message to the network coordinator

1. From the router, access the MicroPython environment.
2. At the MicroPython >>> prompt, type import xbee and press Enter.
3. At the MicroPython >>> prompt, type xbee.transmit(xbee.ADDR_COORDINATOR, "Hello

World!") and press Enter.
4. On the coordinator, you can issue an xbee.receive() call to output the received packet.

Example: transmit custom messages to all nodes in a network
This program performs a network discovery and sends the message 'Hello <Destination Node
Identifier>!' to individual nodes in the network. For more information, see Example: network
Discovery using MicroPython.

import xbee

Perform a network discovery to gather destination address:
print("Discovering remote nodes, please wait...")
node_list = list(xbee.discover())
if not node_list:

Get started with MicroPython MicroPython examples

Digi XBee3® DigiMesh 2.4 RF Module User Guide 41

raise Exception("Network discovery did not find any remote devices")

for node in node_list:
dest_addr = node['sender_eui64']
dest_node_id = node['node_id']
payload_data = "Hello, " + dest_node_id + "!"

try:
print("Sending \"{}\" to {}".format(payload_data, dest_addr))
xbee.transmit(dest_addr, payload_data)

except Exception as err:
print(err)

print("complete")

Receiving data
Use the receive() function from the xbee module to receive messages. When MicroPython is active on
a device (AP is set to 4), all incoming messages are saved to a receive queue within MicroPython. This
receive queue is limited in size and only has room for 4 messages. To ensure that data is not lost, it is
important to continuously iterate through the receive queue and process any of the packets within.
If the receive queue is full and another message is sent to the device, it will not acknowledge the
packet and the sender generates a failure status of 0x24 (Address not found).
The receive() function returns one of the following:

n None: No message (the receive queue is empty).
n Message dictionary consisting of:

l sender_nwk: 16-bit network address of the sending node.
l sender_eui64: 64-bit address (as a "bytes object") of the sending node.
l source_ep: source endpoint as an integer.
l dest_ep: destination endpoint as an integer.
l cluster: cluster id as an integer.
l profile: profile id as an integer.
l broadcast: True or False depending on whether the frame was broadcast or unicast.
l payload: "Bytes object" of the payload. This is a bytes object instead of a string, because

the payload can contain binary data.

Example: continuously receive data
In this example, the format_packet() helper formats the contents of the dictionary and format_eui64
() formats the bytes object holding the EUI-64. The while loop shows how to poll for packets
continually to ensure that the receive buffer does not become full.

def format_eui64(addr):
return ':'.join('%02x' % b for b in addr)

def format_packet(p):
type = 'Broadcast' if p['broadcast'] else 'Unicast'
print("%s message from EUI-64 %s (network 0x%04X)" % (type,

format_eui64(p['sender_eui64']), p['sender_nwk']))
print(" from EP 0x%02X to EP 0x%02X, Cluster 0x%04X, Profile 0x%04X:" %

(p['source_ep'], p['dest_ep'], p['cluster'], p['profile']))
print(p['payload'])

Get started with MicroPython MicroPython examples

Digi XBee3® DigiMesh 2.4 RF Module User Guide 42

import xbee, time
while True:

print("Receiving data...")
print("Press CTRL+C to cancel.")
p = xbee.receive()
if p:

format_packet(p)
else:

time.sleep(0.25) # wait 0.25 seconds before checking again

If this node had previously received a packet, it outputs as follows:

Unicast message from EUI-64 00:13:a2:00:41:74:ca:70 (network 0x6D81)
from EP 0xE8 to EP 0xE8, Cluster 0x0011, Profile 0xC105:

b'Hello World!'

Note Digi recommends calling the receive() function in a loop so no data is lost. On modules where
there is a high volume of network traffic, there could be data lost if the messages are not pulled from
the queue fast enough.

Example: communication between two XBee3 DigiMesh modules
This example combines all of the previous examples and represents a full application that configures a
network, discovers remote nodes, and sends and receives messages.
First, we will upload some utility functions into the flash space of MicroPython so that the following
examples will be easier to read.
Complete the following steps to compile and execute utility functions using flash mode on both
devices:

1. Access the MicroPython environment.
2. Press Ctrl + F.
3. Copy the following code:

import xbee, time
Utility functions to perform XBee3 DigiMesh operations
def format_eui64(addr):

return ':'.join('%02x' % b for b in addr)

def format_packet(p):
type = 'Broadcast' if p['broadcast'] else 'Unicast'
print("%s message from EUI-64 %s" %

(type, format_eui64(p['sender_eui64'])))
print("from EP 0x%02X to EP 0x%02X, Cluster 0x%04X, Profile 0x%04X:" %

(p['source_ep'], p['dest_ep'], p['cluster'], p['profile']))
print(p['payload'],"\n")

4. At the MicroPython 1^^^ prompt, right-click and select the Paste option.
5. Press Ctrl+D to finish. The code is uploaded to the flash memory and then compiled. At the

"Automatically run this code at startup" [Y/N]?" prompt, select Y.
6. Press Ctrl+R to run the compiled code; this provides access to these utility functions for the

next examples.

Get started with MicroPython MicroPython examples

Digi XBee3® DigiMesh 2.4 RF Module User Guide 43

WARNING! MicroPython code stored in flash is saved in the file system as main.py. If the
file system has not been formatted, then the following error is generated:
OSError: [Errno 7019] ENODEV
The file system can be formatted in one of three ways:
In XCTU by using the File System Manager.
In Commandmode using the ATFS FORMAT confirm command—see FS (File System).
In MicroPython by issuing the following code:

import os
os.format()

Example code on the aggregator module
The following example code configures DigiMesh network settings, performs a network discovery to
find the remote node, and continuously prints out any incoming data.

1. Access the MicroPython environment.
2. Copy the following sample code:

print("Configuring DigiMesh network settings...")
xbee.atcmd("NI", "Aggregator")
network_settings = {"CH": 0x13, "ID": 0x1111, "EE": 0}
for command, value in network_settings.items():

xbee.atcmd(command, value)
xbee.atcmd("AC") # Apply changes
time.sleep(1)

print("Waiting for a remote node to join...")
node_list = []
while len(node_list) == 0:

Perform a network discovery until the router joins
node_list = list(xbee.discover())

print("Remote node found, transmitting data")

for node in node_list:
dest_addr = node['sender_eui64'] # using 64-bit addressing
dest_node_id = node['node_id']
payload_data = "Hello, " + dest_node_id + "!"

print("Sending \"{}\" to {}".format(payload_data, repr(dest_addr)))
xbee.transmit(dest_addr, payload_data)

Start the receive loop
print("Receiving data...")
print("Hit CTRL+C to cancel")
while True:

p = xbee.receive()
if p:

format_packet(p)
else:

time.sleep(0.25)

https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_interact_with_xbee_file_system.htm

Get started with MicroPython Exit MicroPython mode

Digi XBee3® DigiMesh 2.4 RF Module User Guide 44

3. Press Ctrl+E to enter paste mode.
4. At the MicroPython >>> prompt, right-click and select the Paste option. Once you paste the

code, it executes immediately.

Example code on the router module
The following example code joins the Zigbee network from the previous example, and continuously
prints out any incoming data. This device also sends its temperature data every 5 seconds to the
coordinator address.

1. Access the MicroPython environment.
2. Copy the following sample code:

print("Configuring network settings...")
xbee.atcmd("NI", "Remote")
network_settings = {"CH": 0x13, "ID": 0x1111, "EE": 0}
for command, value in network_settings.items():

xbee.atcmd(command, value)
xbee.atcmd("AC") # Apply changes
time.sleep(1)

print("Network configured\n")

last_sent = time.ticks_ms()
interval = 5000 # How often to send a message

Start the transmit/receive loop
print("Sending temp data every {} seconds".format(interval/1000))
while True:

p = xbee.receive()
if p:

format_packet(p)
else:

Transmit temperature if ready
if time.ticks_diff(time.ticks_ms(), last_sent) > interval:

temp = "Temperature: {}C".format(xbee.atcmd("TP"))
print("\tsending " + temp)
try:

xbee.transmit(xbee.ADDR_BROADCAST, temp)
except Exception as err:

print(err)
last_sent = time.ticks_ms()

time.sleep(0.25)

3. Press Ctrl+E to enter paste mode.
4. At the MicroPython >>> prompt, right-click and select the Paste option. Once you paste the

code, it executes immediately.

Exit MicroPython mode
To exit MicroPython mode:

1. In the XCTU MicroPython terminal, click the green Close button .
2. Click Close at the bottom of the terminal to exit the terminal.

Get started with MicroPython Other terminal programs

Digi XBee3® DigiMesh 2.4 RF Module User Guide 45

3. In XCTU's Configuration working mode , change AP API Enable to another mode and click

the Write button . We recommend changing to Transparent mode [0], as most of the
examples use this mode.

Other terminal programs
If you do not use the MicroPython terminal in XCTU, you can use other terminal programs to
communicate with the XBee3 DigiMesh RF Module. If you use Microsoft Windows, follow the
instructions for Tera Term; if you use Linux, follow the instructions for picocom. To download these
programs:

n Tera Term for Windows, see ttssh2.osdn.jp/index.html.en.
n Picocom for Linux, see developer.ridgerun.com/wiki/index.php/Setting_up_Picocom_-_Ubuntu
n Source code and in-depth information, see github.com/npat-efault/picocom.

Tera Term for Windows
With the XBee3 DigiMesh RF Module in MicroPython mode (AP = 4), you can access the MicroPython
prompt using a terminal.

1. Open Tera Term. The Tera Term: New connection window appears.
2. Click the Serial radio button to select a serial connection.
3. From the Port: drop-downmenu, select the COM port that the XBee3 DigiMesh RF Module is

connected to.
4. Click OK. The COMxx - Tera Term VT terminal window appears and Tera Term attempts to

connect to the device at a baud rate of 9600 bps. The terminal will not allow communication
with the device since the baud rate setting is incorrect. You must change this rate as it was
previously set to 115200 bps.

5. Click Setup and Serial Port. The Tera Term: Serial port setup window appears.

6. In the Tera Term: Serial port setup window, set the parameters to the following values:
n Port: Shows the port that the XBee3 DigiMesh RF Module is connected on.
n Baud rate: 115200
n Data: 8 bit
n Parity: none

https://ttssh2.osdn.jp/index.html.en
https://developer.ridgerun.com/wiki/index.php/Setting_up_Picocom_-_Ubuntu
https://github.com/npat-efault/picocom

Get started with MicroPython Use picocom in Linux

Digi XBee3® DigiMesh 2.4 RF Module User Guide 46

n Stop: 1 bit
n Flow control: hardware
n Transmit delay: N/A

7. Click OK to apply the changes to the serial port settings. The settings should go into effect
right away.

8. To verify that local echo is not enabled and that extra line-feeds are not enabled:
a. In Tera Term, click Setup and select Terminal.
b. In the New-line area of the Tera Term: Serial port setup window, click the

Receive drop-downmenu and select AUTO if it does not already show that value.
c. Make sure the Local echo box is not checked.

9. Click OK.
10. Press Ctrl+B to get the MicroPython version banner and prompt.

MicroPython v1.9.3-716-g507d0512 on 2018-02-20; XBee3 DigiMesh with EFR32MG
Type "help()" for more information.
>>>

Now you can type MicroPython commands at the >>> prompt.

Use picocom in Linux
With the XBee3 DigiMesh RF Module in MicroPython mode (AP = 4), you can access the MicroPython
prompt using a terminal.

Note The user must have read and write permission for the serial port the XBee3 DigiMesh RF Module
is connected to in order to communicate with the device.

1. Open a terminal in Linux and type picocom -b 115200 /dev/ttyUSB0. This assumes you have
no other USB-to-serial devices attached to the system.

2. Press Ctrl+B to get the MicroPython version banner and prompt. You can also press Enter to
bring up the prompt.

If you do have other USB-to-serial devices attached:

1. Before attaching the XBee3 DigiMesh RF Module, check the directory /dev/ for any devices
named ttyUSBx, where x is a number. An easy way to list these is to type: ls /dev/ttyUSB*.
This produces a list of any device with a name that starts with ttyUSB.

2. Take note of the devices present with that name, and then connect the XBee3 DigiMesh RF
Module.

3. Check the directory again and you should see one additional device, which is the XBee3
DigiMesh RF Module.

4. In this case, replace /dev/ttyUSB0 at the top with /dev/ttyUSB<number>, where <number>
is the new number that appeared.

It connects and shows "Terminal ready".

Get started with MicroPython Micropython help ()

Digi XBee3® DigiMesh 2.4 RF Module User Guide 47

You can now type MicroPython commands at the >>> prompt.

Micropython help ()
When you type the help() command at the prompt, it provides a link to online help, control commands
and also usage examples.

>>> help()
Welcome to MicroPython!
For online docs please visit http://docs.micropython.org/.
Control commands:
CTRL-A -- on a blank line, enter raw REPL mode
CTRL-B -- on a blank line, enter normal REPL mode
CTRL-C -- interrupt a running program
CTRL-D -- on a blank line, reset the REPL
CTRL-E -- on a blank line, enter paste mode
CTRL-F -- on a blank line, enter flash upload mode
For further help on a specific object, type help(obj)
For a list of available modules, type help('modules')

--

When you type help('modules') at the prompt, it displays all available Micropython modules.

--
>>> help('modules')
__main__ io time uos
array json ubinascii ustruct
binascii machine uerrno utime

Get started with MicroPython Micropython help ()

Digi XBee3® DigiMesh 2.4 RF Module User Guide 48

builtins micropython uhashlib xbee
errno os uio
gc struct ujson
hashlib sys umachine

Plus any modules on the filesystem

--

When you import a module and type help() with the module as the object, you can query all the
functions that the object supports.

--
>>> import sys
>>> help(sys)
object <module 'sys'> is of type module
__name__ -- sys
path -- ['', '/flash', '/flash/lib']
argv -- ['']
version -- 3.4.0
version_info -- (3, 4, 0)
implementation -- ('micropython', (1, 10, 0))
platform -- xbee3-DigiMesh
byteorder -- little
maxsize -- 2147483647
exit -- <function>
stdin -- <io.FileIO 0>
stdout -- <io.FileIO 1>
stderr -- <io.FileIO 2>
modules -- {}
print_exception -- <function>

File system

For detailed information about using MicroPython on the XBee3 DigiMesh RF Module refer to the Digi
MicroPython Programming Guide.

Overview of the file system 50
Directory structure 50
Paths 50
Limitations 50
XCTU interface 51

Digi XBee3® DigiMesh 2.4 RF Module User Guide 49

https://www.digi.com/resources/documentation/Digidocs/90002219/
https://www.digi.com/resources/documentation/Digidocs/90002219/

File system Overview of the file system

Digi XBee3® DigiMesh 2.4 RF Module User Guide 50

Overview of the file system

CAUTION! You need to format the file system if upgrading a device that originally shipped
with older firmware. You can use XCTU, AT commands or MicroPython for that initial format
or to erase existing content at any time.

Note To use XCTU with file system, you need XCTU 6.4.0 or newer.

See FS FORMAT confirm in FS (File System) and ensure that the format is complete.

Directory structure
The XBee3 DigiMesh RF Module's internal flash appears in the file system as /flash, the only entry at
the root level of the file system. Files and directories other than /flash cannot be created within the
root directory, only within /flash. By default /flash contains a lib directory intended for MicroPython
modules.

Paths
The XBee3 DigiMesh RF Module stores all of its files in the top-level directory /flash. On startup, the
ATFS commands and MicroPython each use that directory as their current working directory. When
specifying the path to a file or directory, it is interpreted as follows:

n Paths starting with a forward slash are "absolute" andmust start with /flash to be valid.
n All other paths are relative to the current working directory.
n The directory .. refers to the parent directory, so an operation on ../filename.txt that takes

place in the directory /flash/test accesses the file /flash/filename.txt.
n The directory . refers to the current directory, so the command ATFS ls . lists files in the

current directory.
n Names are case-insensitive, so FILE.TXT, file.txt and FiLe.TxT all refer to the same file.
n File and directory names are limited to 64 characters, and can only contain letters, numbers,

periods, dashes and underscores. A period at the end of the name is ignored.
n The full, absolute path to a file or directory is limited to 255 characters.

Limitations
The file system on the XBee3 DigiMesh RF Module has a few limitations when compared to
conventional file systems:

n When a file on the file system is deleted, the space it was using is not reclaimed. The only way
to reclaim space that has been used is by formatting the file system. The FS INFO command
shows how much space is available and how much space is being used by deleted files.

n The file system can only have one file open for writing at a time.
n The file system cannot create new directories while a file is open for writing.
n Files cannot be renamed.

File system XCTU interface

Digi XBee3® DigiMesh 2.4 RF Module User Guide 51

n The contents of the file system will be lost when any firmware update is performed. See OTA
file system upgrades for information on how to put files on a device after an OTA firmware
update.

XCTU interface
XCTU releases starting with 6.4.0 include a File System Manager in the Tools menu. You can upload
files to and download files from the device, in addition to renaming and deleting existing files and
directories. See the File System manager tool section of the XCTU User Guide for details of its
functionality.

https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#reference/r_file_system_manager_tool.htm
https://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm

Configure the XBee3 DigiMesh RF Module

Software libraries 53
Over-the-air (OTA) firmware update 53
Custom defaults 53
Custom configuration: Create a new factory default 54
XBee bootloader 54
Send a firmware image 55
XBee Network Assistant 55
XBee Multi Programmer 56

Digi XBee3® DigiMesh 2.4 RF Module User Guide 52

Configure the XBee3 DigiMesh RF Module Software libraries

Digi XBee3® DigiMesh 2.4 RF Module User Guide 53

Software libraries
One way to communicate with the XBee3 DigiMesh RF Module is by using a software library. The
libraries available for use with the XBee3 DigiMesh RF Module include:

n XBee Java library
n XBee Python library

The XBee Java Library is a Java API. The package includes the XBee library, its source code and a
collection of samples that help you develop Java applications to communicate with your XBee devices.
The XBee Python Library is a Python API that dramatically reduces the time to market of XBee
projects developed in Python and facilitates the development of these types of applications, making it
an easy process.

Over-the-air (OTA) firmware update
The XBee3 DigiMesh RF Module supports OTA firmware updates using XCTU version 6.3.0 or higher.
For instructions on performing an OTA firmware update with XCTU, see How to update the firmware
of your modules in the XCTU User Guide.

Custom defaults
Custom defaults allow you to preserve a subset of the device configuration parameters even after
returning to default settings using RE (Restore Defaults). This can be useful for settings that identify
the device—such as NI (Network Identifier)—or settings that could make remotely recovering the
device difficult if they were reset—such as ID (Network ID).

Note You must send these commands as local AT commands, they cannot be set using Remote AT
Command Request frame - 0x17.

Set custom defaults
Use %F (Set Custom Default) to set custom defaults. When the XBee3 DigiMesh RF Module receives
%F it takes the next command it receives and applies it to both the current configuration and the
custom defaults.
To set custom defaults for multiple commands, send a %F before each command.

Restore factory defaults
!C (Clear Custom Defaults) clears all custom defaults, so that RE (Restore Defaults) will restore the
device to factory defaults. Alternatively, R1 (Restore Factory Defaults) restores all parameters to
factory defaults without erasing their custom default values.

Limitations
There is a limitation on the number of custom defaults that can be set on a device. The number of
defaults that can be set depends on the size of the saved parameters and the devices' firmware
version. When there is no more room for custom defaults to be saved, any command sent immediately
after a %F returns an error.
Setting a custom default that has already been set or setting a custom default to the factory default
value will not reclaim the space used by the previous value. The new value takes effect but the old

http://www.digi.com/resources/documentation/digidocs/90001438/Default.htm
http://xbplib.readthedocs.io/en/latest/
http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_ts_how-to_update_firmware.htm
http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#task/t_ts_how-to_update_firmware.htm

Configure the XBee3 DigiMesh RF Module Custom configuration: Create a new factory default

Digi XBee3® DigiMesh 2.4 RF Module User Guide 54

value still occupies space in memory, reducing the number of custom defaults that can be set. This can
be remedied by using !C (Clear Custom Defaults) to clear all custom defaults when changing custom
default values, and by only setting custom defaults that differ from the factory defaults.

Custom configuration: Create a new factory default
You can create a custom configuration that is used as a new factory default. This feature is useful if,
for example, you need to maintain certain settings for manufacturing or want to ensure a feature is
always enabled. When you use RE (Restore Defaults) to perform a factory reset on the device, the
custom configuration is set on the device after applying the original factory default settings.
For example, by default Bluetooth is disabled on devices. You can create a custom configuration in
which Bluetooth is enabled by default. When you use RE to reset the device to the factory defaults, the
Bluetooth configuration set to the custom configuration (enabled) rather than the original factory
default (disabled).
The custom configuration is stored in non-volatile memory. You can continue to create and save
custom configurations until the XBee3 DigiMesh RF Module's memory runs out of space. If there is no
space left to save a configuration, the device returns an error.
You can use !C (Clear Custom Defaults) to clear or overwrite a custom configuration at any time.

Set a custom configuration
1. Open XCTU and load your device.
2. Enter Commandmode.
3. Perform the following process for each configuration that you want to set as a factory default.

a. Send the Set Custom Default command, AT%F. This command enables you to enter
a custom configuration.

b. Send the custom configuration command. For example: ATBT 1. This command sets
the default for Bluetooth to enabled.

Clear all custom configuration on a device
After you have set configurations using %F (Set Custom Default), you can return all configurations to
the original factory defaults.

1. Open XCTU and load the device.
2. Enter Commandmode.
3. Send AT!C.

XBee bootloader
You can update firmware on the XBee3 DigiMesh RF Module serially. This is done by invoking the
XBee3 bootloader and transferring the firmware image using XMODEM.
This process is also used for updating a local device's firmware using XCTU.
XBee devices use a modified version of Silicon Labs' Gecko bootloader. This bootloader version
supports a custom entry mechanism that uses module pins DIN, DTR/SLEEP_RQ, and RTS.
To invoke the bootloader, do the following:

Configure the XBee3 DigiMesh RF Module Send a firmware image

Digi XBee3® DigiMesh 2.4 RF Module User Guide 55

1. Set DTR/SLEEP_RQ low (CMOS0V) and RTS high.
2. Send a serial break to the DIN pin and power cycle or reset the module.
3. When the device powers up, set DTR/SLEEP_RQ and DIN to low (CMOS0V) and RTS should be

high.
4. Terminate the serial break and send a carriage return at 115200 baud to the device.
5. If successful, the device sends the Silicon Labs' Gecko bootloader menu out the DOUT pin at

115200 baud.
6. You can send commands to the bootloader at 115200 baud.

Note Disable hardware flow control when entering and communicating with the bootloader.

All serial communications with the module use 8 data bits, no parity bit, and 1 stop bit.

Send a firmware image
After invoking the bootloader, a menu is sent out the UART at 115200 baud. To upload a firmware
image through the UART interface:

1. Look for the bootloader prompt BL > to ensure the bootloader is active.
2. Send an ASCII 1 character to initiate a firmware update.
3. After sending a 1, the device waits for an XModem CRC upload of a .gbl image over the serial

line at 115200 baud. Send the .gbl file to the device using standard XMODEM-CRC.

If the firmware image is successfully loaded, the bootloader outputs a “complete” string. Invoke the
newly loaded firmware by sending a 2 to the device.
If the firmware image is not successfully loaded, the bootloader outputs an "aborted string". It return
to the main bootloader menu. Some causes for failure are:

n Over 1 minute passes after the command to send the firmware image and the first block of the
image has not yet been sent.

n A power cycle or reset event occurs during the firmware load.
n A file error or a flash error occurs during the firmware load.

XBee Network Assistant
The XBee Network Assistant is an application designed to inspect andmanage RF networks created
by Digi XBee devices. Features include:

n Join and inspect any nearby XBee network to get detailed information about all the nodes it
contains.

n Update the configuration of all the nodes of the network, specific groups, or single devices
based on configuration profiles.

n Geo-locate your network devices or place them in custommaps and get information about the
connections between them.

n Export the network you are inspecting and import it later to continue working or work offline.
n Use automatic application updates to keep you up to date with the latest version of the tool.

See the XBee Network Assistant User Guide for more information.
To install the XBee Network Assistant:

https://www.digi.com/resources/documentation/digidocs/90002288/Default.htm

Configure the XBee3 DigiMesh RF Module XBee Multi Programmer

Digi XBee3® DigiMesh 2.4 RF Module User Guide 56

1. Navigate to digi.com/xbeenetworkassistant.
2. Click General Diagnostics, Utilities and MIBs.
3. Click the XBee Network Assistant - Windows x86 link.
4. When the file finishes downloading, run the executable file and follow the steps in the XBee

Network Assistant Setup Wizard.

XBee Multi Programmer
The XBee Multi Programmer is a combination of hardware and software that enables partners and
distributors to program multiple Digi Radio frequency (RF) devices simultaneously. It provides a fast
and easy way to prepare devices for distribution or large networks deployment.
The XBee Multi Programmer board is an enclosed hardware component that allows you to program up
to six RF modules thanks to its six external XBee sockets. The XBee Multi Programmer application
communicates with the boards and allows you to set up and execute programming sessions. Some of
the features include:

n Each XBee Multi Programmer board allows you to program up to six devices simultaneously.
Connect more boards to increase the programming concurrency.

n Different board variants cover all the XBee form factors to program almost any Digi RF device.

Download the XBee Multi Programmer application from: digi.com/support/productdetail?pid=5641
See the XBee Multi Programmer User Guide for more information.

https://www.digi.com/support/productdetail?pid=5642
https://www.digi.com/support/productdetail?pid=5641
https://www.digi.com/resources/documentation/digidocs/90002263/default.htm

Modes

Transparent operating mode 58
API operating mode 58
Commandmode 58
Idle mode 60
Transmit mode 60
Receive mode 60

Digi XBee3® DigiMesh 2.4 RF Module User Guide 57

Modes Transparent operating mode

Digi XBee3® DigiMesh 2.4 RF Module User Guide 58

Transparent operating mode
Devices operate in this mode by default. The device acts as a serial line replacement when it is in
Transparent operating mode. The device queues all UART data it receives through the DIN pin for RF
transmission. When a device receives RF data, it sends the data out through the DOUT pin. You can set
the configuration parameters using Commandmode.

API operating mode
API operating mode is an alternative to Transparent operating mode. API mode is a frame-based
protocol that allows you to direct data on a packet basis. The device communicates UART or SPI data
in packets, also known as API frames. This mode allows for structured communications with
computers andmicrocontrollers.
The advantages of API operating mode include:

n It is easier to send information to multiple destinations
n The host receives the source address for each received data frame
n You can change parameters without entering Commandmode

Command mode
Commandmode is a state in which the firmware interprets incoming characters as commands. It
allows you to modify the device’s configuration using parameters you can set using AT
commands. When you want to read or set any parameter of the XBee3 DigiMesh RF Module using this
mode, you have to send an AT command. Every AT command starts with the letters AT followed by the
two characters that identify the command and then by some optional configuration values.
The operating modes of the XBee3 DigiMesh RF Module are controlled by the AP (API Enable) setting,
but Commandmode is always available as a mode the device can enter while configured for any of the
operating modes.
Commandmode is available on the UART interface for all operating modes. You cannot use the SPI
interface to enter Commandmode.

Enter Command mode
To get a device to switch into Commandmode, you must issue the following sequence: +++ within one
second. There must be at least one second preceding and following the +++ sequence. Both the
command character (CC) and the silence before and after the sequence (GT) are configurable. When
the entrance criteria are met the device responds with OK\r on UART signifying that it has entered
Commandmode successfully and is ready to start processing AT commands.
If configured to operate in Transparent operating mode, when entering Commandmode the XBee3
DigiMesh RF Module knows to stop sending data and start accepting commands locally.

Note Do not press Return or Enter after typing +++ because it interrupts the guard time silence and
prevents you from entering Commandmode.

When the device is in Commandmode, it listens for user input and is able to receive AT commands on
the UART. If CT time (default is 10 seconds) passes without any user input, the device drops out of
Commandmode and returns to the previous operating mode. You can force the device to leave
Commandmode by sending CN (Exit Commandmode).

Modes Command mode

Digi XBee3® DigiMesh 2.4 RF Module User Guide 59

You can customize the command character, the guard times and the timeout in the device’s
configuration settings. For more information, see CC (Command Character), CT (Command Mode
Timeout) and GT (Guard Time).

Troubleshooting
Failure to enter Commandmode is often due to baud rate mismatch. Ensure that the baud rate of the
connection matches the baud rate of the device. By default, BD (Baud Rate) = 3 (9600 b/s).
There are two alternative ways to enter Commandmode:

n A serial break for six seconds enters Commandmode. You can issue the "break" command
from a serial console, it is often a button or menu item.

n Asserting DIN (serial break) upon power up or reset enters Commandmode. XCTU guides you
through a reset and automatically issues the break when needed.

Note You must assert RTS for both of these methods, otherwise the device enters the bootloader.

Both of these methods temporarily set the device's baud rate to 9600 and return an OK on the UART
to indicate that Commandmode is active. When Commandmode exits, the device returns to normal
operation at the baud rate that BD is set to.

Send AT commands
Once the device enters Commandmode, use the syntax in the following figure to send AT commands.
Every AT command starts with the letters AT, which stands for "attention." The AT is followed by two
characters that indicate which command is being issued, then by some optional configuration values.
To read a parameter value stored in the device’s register, omit the parameter field.

The preceding example changes NI (Network Identifier) toMy XBee.

Multiple AT commands
You can sendmultiple AT commands at a time when they are separated by a comma in Command
mode; for example, ATNIMy XBee,AC<cr>.
The preceding example changes the NI (Node Identifier) toMy XBee andmakes the setting active
through AC (Apply Changes).

Parameter format
Refer to the list of AT commands for the format of individual AT command parameters. Valid formats
for hexidecimal values include with or without a leading 0x for example FFFF or 0xFFFF.

Response to AT commands
When using AT commands to set parameters the XBee3 DigiMesh RF Module responds with OK<cr> if
successful and ERROR<cr> if not.

Modes Idle mode

Digi XBee3® DigiMesh 2.4 RF Module User Guide 60

Apply command changes
Any changes you make to the configuration command registers using AT commands do not take effect
until you apply the changes. For example, if you send the BD command to change the baud rate, the
actual baud rate does not change until you apply the changes. To apply changes:

1. Send AC (Apply Changes).
2. SendWR (Write).

or:
3. Exit Commandmode.

Make command changes permanent
Send a WR (Write) command to save the changes.WRwrites parameter values to non-volatile memory
so that parameter modifications persist through subsequent resets.
Send as RE (Restore Defaults) to wipe settings saved using WR back to their factory defaults, or
custom defaults if you have set any.

Note You still have to use WR to save the changes enacted with RE.

Exit Command mode
1. Send CN (Exit Commandmode) followed by a carriage return.

or:
2. If the device does not receive any valid AT commands within the time specified by CT

(Command Mode Timeout), it returns to Transparent or API mode. The default Commandmode
timeout is 10 seconds.

For an example of programming the device using AT Commands and descriptions of each configurable
parameter, see AT commands.

Idle mode
When not receiving or transmitting data, the device is in Idle mode. During Idle mode, the device
listens for valid data on both the RF and serial ports.

Transmit mode
Transmit mode is the mode in which the device is transmitting data. This typically happens after data
is received from the serial port.

Receive mode
This is the default mode for the XBee3 DigiMesh RF Module. The device is in Receive mode when it is
not transmitting data. If a destination node receives a valid RF packet, the destination node transfers
the data to its serial transmit buffer.

Serial communication

Serial interface 62
Serial receive buffer 62
Serial transmit buffer 62
UART data flow 62
Flow control 63

Digi XBee3® DigiMesh 2.4 RF Module User Guide 61

Serial communication Serial interface

Digi XBee3® DigiMesh 2.4 RF Module User Guide 62

Serial interface
The XBee3 DigiMesh RF Module interfaces to a host device through a serial port. The device can
communicate through its serial port:

n Through logic and voltage compatible universal asynchronous receiver/transmitter (UART).
n Through a level translator to any serial device, for example through an RS-232 or USB interface

board.
n Through SPI, as described in SPI communications.

Serial receive buffer
When serial data enters the XBee3 DigiMesh RF Module through the serial port, the device stores the
data in the serial receive buffer until it can be processed. Under certain conditions, the device may
receive data when the serial receive buffer is already full. In that case, the device discards the data.
The serial receive buffer becomes full when data is streaming into the serial port faster than it can be
processed and sent over the air (OTA). While the speed of receiving the data on the serial port can be
much faster than the speed of transmitting data for a short period, sustained operation in that mode
causes the device to drop data due to running out of places to put the data. Some things that may
delay over the air transmissions are address discovery, route discovery, and retransmissions.
Processing received RF data can also take away time and resources for processing incoming serial
data.
If the UART is the serial port and you enable the CTS flow control, the device alerts the external data
source when the receive buffer is almost full. The host delays sending data to the device until the
module asserts CTS again, allowing more data to come in.

Serial transmit buffer
When the device receives RF data, it moves the data into the serial transmit buffer and sends it out
the UART. If the serial transmit buffer becomes full and the system buffers are also full, then it drops
the entire RF data packet. Whenever the device receives data faster than it can process and transmit
the data out the serial port, there is a potential of dropping data.

UART data flow
Devices that have a UART interface connect directly to the pins of the XBee3 DigiMesh RF Module as
shown in the following figure. The figure shows system data flow in a UART-interfaced environment.
Low-asserted signals have a horizontal line over the signal name.

Serial communication Flow control

Digi XBee3® DigiMesh 2.4 RF Module User Guide 63

For more information about hardware specifications for the UART, see the XBee3 Hardware Reference
Manual.

Serial data
A device sends data to the XBee3 DigiMesh RF Module's UART as an asynchronous serial signal. When
the device is not transmitting data, the signals should idle high.
For serial communication to occur, you must configure the UART of both devices (the microcontroller
and the XBee3 DigiMesh RF Module) with compatible settings for the baud rate, parity, start bits, stop
bits, and data bits.
Each data byte consists of a start bit (low), 8 data bits (least significant bit first) and a stop bit (high).
The following diagram illustrates the serial bit pattern of data passing through the device. The
diagram shows UART data packet 0x1F (decimal number 31) as transmitted through the device.

You can configure the UART baud rate, parity, and stop bits settings on the device with the BD, NB,
and SB commands respectively. For more information, see UART interface commands.

Flow control
The XBee3 DigiMesh RF Module maintains buffers to collect serial and RF data that it receives. The
serial receive buffer collects incoming serial characters and holds them until the device can process
them. The serial transmit buffer collects the data it receives via the RF link until it transmits that data
out the serial port. The following figure shows the process of device buffers collecting received serial
data.
Use D6 (DIO6/RTS Configuration) and D7 (DIO7/CTS Configuration) to set flow control.

https://www.digi.com/resources/documentation/digidocs/90001543/Default.htm
https://www.digi.com/resources/documentation/digidocs/90001543/Default.htm

Serial communication Flow control

Digi XBee3® DigiMesh 2.4 RF Module User Guide 64

Clear-to-send (CTS) flow control
If you enable CTS flow control (D7 (DIO7/CTS Configuration)), when the serial receive buffer is more
than FT bytes full, the device de-asserts CTS (sets it high) to signal to the host device to stop sending
serial data. The device reasserts CTS after the serial receive buffer has less than FT bytes in it. See FT
(Flow Control Threshold) to configure and read this threshold.

RTS flow control
If you set D6 (DIO6/RTS Configuration) to enable RTS flow control, the device does not send data in
the serial transmit buffer out the DOUT pin as long as RTS is de-asserted (set high). Do not de-assert
RTS for long periods of time or the serial transmit buffer will fill. If the device receives an RF data
packet and the serial transmit buffer does not have enough space for all of the data bytes, it discards
the entire RF data packet.
If the device sends data out the UART when RTS is de-asserted (set high) the device could send up to
five characters out the UART port after RTS is de-asserted.
Cases in which the DO buffer may become full, resulting in dropped RF packets:

1. If the RF data rate is set higher than the interface data rate of the device, the device may
receive data faster than it can send the data to the host. Even occasional transmissions from a
large number of devices can quickly accumulate and overflow the transmit buffer.

2. If the host does not allow the device to transmit data out from the serial transmit buffer due to
being held off by hardware flow control.

SPI operation

This section specifies how SPI is implemented on the device, what the SPI signals are, and how full
duplex operations work.

SPI communications 66
Full duplex operation 67
Low power operation 67
Select the SPI port 68
Force UART operation 69

Digi XBee3® DigiMesh 2.4 RF Module User Guide 65

SPI operation SPI communications

Digi XBee3® DigiMesh 2.4 RF Module User Guide 66

SPI communications
The XBee3 DigiMesh RF Module supports SPI communications in slave mode. Slave mode receives the
clock signal and data from the master and returns data to the master. The following table shows the
signals that the SPI port uses on the device.
Refer to the XBee3 Hardware Reference Guide for the pinout of your device.

Signal Direction Function

SPI_MOSI
(Master Out, Slave In)

Input Inputs serial data from the master

SPI_MISO (Master
In, Slave Out)

Output Outputs serial data to the master

SPI_SCLK
(Serial Clock)

Input Clocks data transfers on MOSI and MISO

SPI_SSEL
(Slave Select)

Input Enables serial communication with the slave

SPI_ATTN (Attention) Output Alerts the master that slave has data queued to send. The XBee3
DigiMesh RF Module asserts this pin as soon as data is available
to send to the SPI master and it remains asserted until the SPI
master has clocked out all available data.

In this mode:

n SPI clock rates up to 5 MHz (burst) are possible.
n Data is most significant bit (MSB) first; bit 7 is the first bit of a byte sent over the interface.
n Frame Format mode 0 is used. This means CPOL= 0 (idle clock is low) and CPHA = 0 (data is

sampled on the clock’s leading edge).
n The SPI port only supports API Mode (AP = 1).

The following diagram shows the frame format mode 0 for SPI communications.

SPI mode is chip to chip communication. We do not supply a SPI communication interface on the XBee
development evaluation boards included in the development kit.

https://www.digi.com/resources/documentation/Digidocs/90001543/

SPI operation Full duplex operation

Digi XBee3® DigiMesh 2.4 RF Module User Guide 67

Full duplex operation
When using SPI on the XBee3 DigiMesh RF Module the device uses API operation without escaped
characters to packetize data. The device ignores the configuration of AP because SPI does not
operate in any other mode. SPI is a full duplex protocol, even when data is only available in one
direction. This means that whenever a device receives data, it also transmits, and that data is
normally invalid. Likewise, whenever a device transmits data, invalid data is probably received. To
determine whether or not received data is invalid, the firmware places the data in API packets.
SPI allows for valid data from the slave to begin before, at the same time, or after valid data begins
from the master. When the master sends data to the slave and the slave has valid data to send in the
middle of receiving data from the master, a full duplex operation occurs, where data is valid in both
directions for a period of time. Not only must the master and the slave both be able to keep up with
the full duplex operation, but both sides must honor the protocol.
The following figure illustrates the SPI interface while valid data is being sent in both directions.

Low power operation
Sleepmodes generally work the same on SPI as they do on UART. However, due to the addition of SPI
mode, there is an option of another sleep pin, as described below.
By default, Digi configures DIO8 (SLEEP_REQUEST) as a peripheral and during pin sleep it wakes the
device and puts it to sleep. This applies to both the UART and SPI serial interfaces.
If SLEEP_REQUEST is not configured as a peripheral and SPI_SSEL is configured as a peripheral, then
pin sleep is controlled by SPI_SSEL rather than by SLEEP_REQUEST. Asserting SPI_SSEL by driving it
low either wakes the device or keeps it awake. Negating SPI_SSEL by driving it high puts the device to
sleep.
Using SPI_SSEL to control sleep and to indicate that the SPI master has selected a particular slave
device has the advantage of requiring one less physical pin connection to implement pin sleep on SPI.
It has the disadvantage of putting the device to sleep whenever the SPI master negates SPI_SSEL
(meaning time is lost waiting for the device to wake), even if that was not the intent.
If the user has full control of SPI_SSEL so that it can control pin sleep, whether or not data needs to be
transmitted, then sharing the pin may be a good option in order to make the SLEEP_REQUEST pin
available for another purpose.
If the device is one of multiple slaves on the SPI, then the device sleeps while the SPI master talks to
the other slave, but this is acceptable in most cases.
If you do not configure either pin as a peripheral, then the device stays awake, being unable to sleep in
SM1 mode.

SPI operation Select the SPI port

Digi XBee3® DigiMesh 2.4 RF Module User Guide 68

Select the SPI port
To force SPI mode on through-hole devices, hold DOUT/DIO13 low while resetting the device until SPI_
ATTN asserts. This causes the device to disable the UART and go straight into SPI communication
mode. Once configuration is complete, the device queues a modem status frame to the SPI port,
which causes the SPI_ATTN line to assert. The host can use this to determine that the SPI port is
configured properly.
On surface-mount devices, forcing DOUT low at the time of reset has no effect. To use SPI mode on
the SMT modules, assert the SPI_SSEL low after reset and before any UART data is input.
Forcing DOUT low on TH devices forces the device to enable SPI support by setting the following
configuration values:

Through-hole Micro and Surface-mount SPI signal

D1 (DIO1/ADC1/TH_SPI_ATTN Configuration) P9 (DIO19/SPI_ATTN Configuration) ATTN

D2 (DIO2/ADC2/TH_SPI_CLK Configuration) P8 (DIO18/SPI_CLK Configuration) SCLK

D3 (DIO3/ADC3/TH_SPI_SSEL Configuration) P7 (DIO17/SPI_SSEL Configuration) SSEL

D4 (DIO4/TH_SPI_MOSI Configuration) P6 (DIO16/SPI_MOSI Configuration) MOSI

P2 (DIO12/TH_SPI_MISO Configuration) P5 (DIO15/SPI_MISO Configuration) MISO

Note The ATTN signal is optional—you can still use SPI mode if you disable the SPI_ATTN pin (D1 on
through-hole or P9 on surface-mount devices).

As long as the host does not issue a WR command, these configuration values revert to previous
values after a power-on reset. If the host issues a WR command while in SPI mode, these same
parameters are written to flash, and after a reset the device continues to operate in SPI mode.
If the UART is disabled and the SPI is enabled in the written configuration, then the device comes up in
SPI mode without forcing it by holding DOUT low. If both the UART and the SPI are configured (P3
(DIO13/UART_DOUT) through P9 (DIO19/SPI_ATTN Configuration) are set to 1) at the time of reset,
then output goes to the UART until the host sends the first input to the SPI interface. As soon as the
first input comes on the SPI port, then all subsequent output goes to the SPI port and the UART is
disabled.
Once you select a serial port (UART or SPI), all subsequent output goes to that port, even if you apply a
new configuration. Once the SPI interface is made active, the only way to switch the selected serial
port back to UART is to reset the device.
When the master asserts the slave select (SPI_SSEL) signal, SPI transmit data is driven to the output
pin SPI_MISO, and SPI data is received from the input pin SPI_MOSI. The SPI_SSEL pin has to be
asserted to enable the transmit serializer to drive data to the output signal SPI_MISO. A rising edge
on SPI_SSEL causes the SPI_MISO line to be tri-stated such that another slave device can drive it, if so
desired.
If the output buffer is empty, the SPI serializer transmits the last valid bit repeatedly, which may be
either high or low. Otherwise, the device formats all output in API mode 1 format, as described in
Operate in API mode. The attached host is expected to ignore all data that is not part of a formatted
API frame.

SPI operation Force UART operation

Digi XBee3® DigiMesh 2.4 RF Module User Guide 69

Force UART operation
If you configure a device with only the SPI enabled and no SPI master is available to access the SPI
slave port, you can recover the device to UART operation by holding DIN / CONFIG low at reset time.
DIN/CONFIG forces a default configuration on the UART at 9600 baud and brings up the device in
Commandmode on the UART port. You can then send the appropriate commands to the device to
configure it for UART operation. If you write those parameters, the device comes up with the UART
enabled on the next reset.

I/O support

The following topics describe analog and digital I/O line support, line passing and output control.

Digital I/O support 71
Analog I/O support 71
Monitor I/O lines 72
I/O sample data format 73
API frame support 74
On-demand sampling 74
Example: Commandmode 74
Example: Local AT command in API mode 75
Example: Remote AT command in API mode 75
Periodic I/O sampling 76
Digital I/O change detection 77
I/O line passing 77
Digital line passing 78
Example: Digital line passing 78
Analog line passing 78
Example: Analog line passing 79
Output sample data 79
Output control 79
I/O behavior during sleep 79

Digi XBee3® DigiMesh 2.4 RF Module User Guide 70

I/O support Digital I/O support

Digi XBee3® DigiMesh 2.4 RF Module User Guide 71

Digital I/O support
Digital I/O is available on lines DIO0 through DIO12 (D0 (DIO0/ADC0/Commissioning Configuration) -
D9 (DIO9/ON_SLEEP Configuration) and P0 (DIO10/RSSI/PWM0 Configuration) - P4 (DIO14/UART_DIN
Configuration)). Digital sampling is enabled on these pins if configured as 3, 4, or 5 with the following
meanings:

n 3 is digital input.
l Use PR (Pull-up/Down Resistor Enable) to enable internal pull up/down resistors for each

digital input. Use PD (Pull Up/Down Direction) to determine the direction of the internal pull
up/down resistor. All disabled and digital input pins are pulled up by default.

n 4 is digital output low.
n 5 is digital output high.

Function Micro Pin SMT Pin TH Pin AT Command

DIO0 31 33 20 D0 (DIO0/ADC0/Commissioning Configuration)

DIO1 30 32 19 D1 (DIO1/ADC1/TH_SPI_ATTN Configuration)

DIO2 29 31 18 D2 (DIO2/ADC2/TH_SPI_CLK Configuration)

DIO3 28 30 17 D3 (DIO3/ADC3/TH_SPI_SSEL Configuration)

DIO4 23 24 11 D4 (DIO4/TH_SPI_MOSI Configuration)

DIO5 26 28 15 D5 (DIO5/Associate Configuration)

DIO6 27 29 16 D6 (DIO6/RTS Configuration)

DIO7 24 25 12 D7 (DIO7/CTS Configuration)

DIO8 9 10 9 D8 (DIO8/DTR/SLP_Request Configuration)

DIO9 25 26 13 D9 (DIO9/ON_SLEEP Configuration)

DIO10 7 7 6 P0 (DIO10/RSSI/PWM0 Configuration)

DIO11 8 8 7 P1 (DIO11/PWM1 Configuration)

DIO12 5 5 4 P2 (DIO12/TH_SPI_MISO Configuration)

DIO13 3 3 2 P3 (DIO13/UART_DOUT)

DIO14 4 4 3 P4 (DIO14/UART_DIN Configuration)

I\O sampling is not available for pins P5 through P9. See the XBee3 Hardware Reference Manual for full
pinouts and functionality.

Analog I/O support
Analog input is available on D0 through D3. Configure these pins to 2 (ADC) to enable analog sampling.
PWM output is available on P0 and P1, which can be used for Analog line passing. Use M0 (PWM0 Duty
Cycle) and M1 (PWM1 Duty Cycle) to set a fixed PWM level.

https://www.digi.com/resources/documentation/digidocs/90001543/Default.htm

I/O support Monitor I/O lines

Digi XBee3® DigiMesh 2.4 RF Module User Guide 72

Function Micro Pin SMT Pin TH Pin AT Command

ADC0 31 33 20 D0 (DIO0/ADC0/Commissioning Configuration)

ADC1 30 32 19 D1 (DIO1/ADC1/TH_SPI_ATTN Configuration)

ADC2 29 31 18 D2 (DIO2/ADC2/TH_SPI_CLK Configuration)

ADC3 28 30 17 D3 (DIO3/ADC3/TH_SPI_SSEL Configuration)

PWM0 7 7 6 P0 (DIO10/RSSI/PWM0 Configuration)

PWM1 8 8 7 P1 (DIO11/PWM1 Configuration)

AV (Analog Voltage Reference) specifies the analog reference voltage used for the 10-bit ADCs. Analog
sample data is represented as a 2-byte value. For a 10-bit ADC, the acceptable range is from 0x0000
to 0x03FF. To convert this value to a useful voltage level, apply the following formula:

ADC / 1023 (vREF) = Voltage

Example
An ADC value received is 0x01AE; to convert this into a voltage the hexadecimal value is first converted
to decimal (0x01AE = 430). Using the default AV reference of 1.25 V, apply the formula as follows:

430 / 1023 (1.25 V) = 525 mV

Monitor I/O lines
You can monitor pins you configure as digital input, digital output, or analog input and generate I/O
sample data. If you do not define inputs or outputs, no sample data is generated.
Typically, I/O samples are generated by configuring the device to sample I/O pins periodically (based
on a timer) or when a change is detected on one or more digital pins. These samples are always sent
over the air to the destination address specified with DH (Destination Address High) and DL
(Destination Address Low).
You can also gather sample data using on-demand sampling, which allows you to interrogate the state
of the device's I/O pins by issuing an AT command. You can do this on either a local or remote
device via an AT command request.
The three methods to generate sample data are:

n Periodic sample (IR (Sample Rate))
l Periodic sampling based on a timer
l Samples are taken immediately upon wake (excluding pin sleep)
l Sample data is sent to DH+DL destination address
l Can be used with line passing
l Requires API mode on receiver

n Change detect (IC (DIO Change Detect))
l Samples are generated when the state of specified digital input pin(s) change
l Sample data is sent to DH+DL destination address
l Can be used with line passing
l Requires API mode on receiver

I/O support I/O sample data format

Digi XBee3® DigiMesh 2.4 RF Module User Guide 73

n On-demand sample (IS (I/O Sample))
l Immediately query the device’s I/O lines
l Can be issued locally in Command Mode
l Can be issued locally or remotely in API mode

These methods are not mutually exclusive and you can use them in combination with each other.

I/O sample data format
Regardless of how I/O data is generated, the format of the sample data is always represented as a
series of bytes in the following format:

Bytes Name Description

1 Sample
sets

Number of sample sets. There is always one sample set per frame.

2 Digital
channel
mask

Indicates which digital I/O lines have sampling enabled. Each bit corresponds to
one digital I/O line on the device.
bit 0 = DIO0
bit 1 = DIO1
bit 2 = DIO2
bit 3 = DIO3
bit 4 = DIO4
bit 5 = DIO5
bit 6 = DIO6
bit 7 = DIO7
bit 8 = DIO8
bit 9 = DIO9
bit 10 = DIO10
bit 11 = DIO11
bit 12 = DIO12
bit 13 = DIO13
bit 14 = DIO14
bit 15 = N/A
Example: a digital channel mask of 0x002F means DIO0, 1, 2, 3 and 5 are
configured as digital inputs or outputs.

1 Analog
channel
mask

Indicates which lines have analog inputs enabled for sampling. Each bit in the
analog channel mask corresponds to one analog input channel. If a bit is set,
then a corresponding 2-byte analog data set is included.
bit 0 = AD0/DIO0
bit 1 = AD1/DIO1
bit 2 = AD2/DIO2
bit 3 = AD3/DIO3

2 Digital
data set

Each bit in the digital data set corresponds to a bit in the digital channel mask
and indicates the digital state of the pin, whether high (1) or low (0).
If the digital channel mask is 0x0000, then these two bytes are omitted as no
digital I/O lines are enabled.

I/O support API frame support

Digi XBee3® DigiMesh 2.4 RF Module User Guide 74

Bytes Name Description

2 Analog
data set
(multiple)

Each enabled ADC line in the analog channel mask will have a separate 2-byte
value based on the number of ADC inputs on the originating device. The data
starts with AD0 and continues sequentially for each enabled analog input
channel up to AD3.
If the analog channel mask is 0x00, then no analog sample bytes is included.

API frame support
I/O samples generated using Periodic I/O sampling (IR) and Digital I/O change detection (IC) are
transmitted to the destination address specified by DH and DL. In order to display the sample data,
the receiver must be operating in API mode (AP = 1 or 2). The sample data is represented as an I/O
sample API frame.
See I/O Data Sample Rx Indicator frame - 0x92 for more information on the frame's format and an
example.

On-demand sampling
You can use IS (I/O Sample) to query the current state of all digital I/O and ADC lines on the device and
return the sample data as an AT command response. If no inputs or outputs are defined, the
command returns an ERROR.
On-demand sampling can be useful when performing initial deployment, as you can send IS locally to
verify that the device and connected sensors are correctly configured. The format of the sample data
matches what is periodically sent using other sampling methods. You can also send IS remotely using
a remote AT command. When sent remotely from a gateway or server to each sensor node on the
network, on-demand sampling can improve battery life and network performance as the remote node
transmits sample data only when requested instead of continuously.
If you send IS using Commandmode, then the device returns a carriage return delimited list
containing the I/O sample data. If IS is sent either locally or remotely via an API frame, the I/O sample
data is presented as the parameter value in the AT command response frame (AT Command
Response frame - 0x88 or Remote Command Response frame - 0x97).

Example: Command mode
An IS command sent in Commandmode returns the following sample data:

Output Description

01 One sample set

0C0C Digital channel mask, indicates which digital lines are sampled
(0x0C0C = 0000 1100 0000 1100b = DIO2, 3, 10, 11)

03 Analog channel mask, indicates which analog lines are sampled
(0x03 = 0000 0011b = AD0, 1)

0408 Digital sample data that corresponds with the digital channel mask
0x0408 = 0000 0100 0000 1000b = DIO3 and DIO10 are high, DIO2 and DIO11 are low

03D0 Analog sample data for AD0

0124 Analog sample data for AD1

I/O support Example: Local AT command in API mode

Digi XBee3® DigiMesh 2.4 RF Module User Guide 75

Example: Local AT command in API mode
The IS command sent to a local device in API mode would use a AT Command Frame - 0x08 or AT
Command - Queue Parameter Value frame - 0x09 frame:

7E 00 04 08 53 49 53 08
The device responds with a AT Command Response frame - 0x88 that contains the sample data:

7E 00 0F 88 53 49 53 00 01 0C 0C 03 04 08 03 D0 01 24 68

Output Field Description

7E Start
Delimiter

Indicates the beginning of an API frame

00 0F Length Length of the packet

88 Frame type AT Command response frame

53 Frame ID This ID corresponds to the Frame ID of the 0x08 request

49 53 AT Command Indicates the AT command that this response corresponds to
0x49 0x53 = IS

00 Status Indicates success or failure of the AT command
00 = OK
if no I/O lines are enabled, this will return 01 (ERROR)

01

I/O sample
data

One sample set

0C 0C Digital channel mask, indicates which digital lines are sampled
(0x0C0C = 0000 1100 0000 1100b = DIO2, 3, 10, 11)

03 Analog channel mask, indicates which analog lines are sampled
(0x03 = 0000 0011b = AD0, 1)

04 08 Digital sample data that corresponds with the digital channel mask
0x0408 = 0000 0100 0000 1000b = DIO3 and DIO10 are high, DIO2 and
DIO11 are low

03 D0 Analog sample data for AD0

01 24 Analog sample data for AD1

68 Checksum Can safely be discarded on received frames

Example: Remote AT command in API mode
The IS command sent to a remote device with an address of 0013A200 12345678 uses a Remote AT
Command Request frame - 0x17:

7E 00 0F 17 87 00 13 A2 00 12 34 56 78 FF FE 00 49 53 FF
The sample data from the device is returned in a Remote Command Response frame - 0x97 frame
with the sample data as the parameter value:

7E 00 19 97 87 00 13 A2 00 12 34 56 78 00 00 49 53 00 01 0C 0C 03 04 08 03 FF 03 FF 50

I/O support Periodic I/O sampling

Digi XBee3® DigiMesh 2.4 RF Module User Guide 76

Output Field Description

7E Start
Delimiter

Indicates the beginning of an API frame

00 19 Length Length of the packet

97 Frame type Remote AT Command response frame

87 Frame ID This ID corresponds to the Frame ID of the 0x17 request

0013A200
12345678

64-bit
source

The 64-bit address of the node that responded to the request

0000 16-bit
source

The 16-bit address of the node that responded to the request

49 53 AT
Command

Indicates the AT command that this response corresponds to
0x49 0x53 = IS

00 Status Indicates success or failure of the AT command
00 = OK
if no I/O lines are enabled, this will return 01 (ERROR)

01

I/O sample
data

One sample set

0C 0C Digital channel mask, indicates which digital lines are sampled
(0x0C0C = 0000 1100 0000 1100b = DIO2, 3, 10, 11)

03 Analog channel mask, indicates which analog lines are sampled
(0x03 = 0000 0011b = AD0, 1)

04 08 Digital sample data that corresponds with the digital channel mask
0x0408 = 0000 0100 0000 1000b = DIO3 and DIO10 are high, DIO2
and DIO11 are low

03 D0 Analog sample data for AD0

01 24 Analog sample data for AD1

50 Checksum Can safely be discarded on received frames

Periodic I/O sampling
Periodic sampling allows a device to take an I/O sample and transmit it to a remote device at a
periodic rate.

Source
Use IR (Sample Rate) to set the periodic sample rate for enabled I/O lines.

n To disable periodic sampling, set IR to 0.
n For all other IR values, the device samples data when IR milliseconds elapse and transmits the

sampled data to the destination address.

The DH (Destination Address High) and DL (Destination Address Low) commands determine the
destination address of the I/O samples. You must configure at least one pin as a digital I/O or ADC
input on the sending node to generate sample data.

I/O support Digital I/O change detection

Digi XBee3® DigiMesh 2.4 RF Module User Guide 77

Destination
If the receiving device is operating in API operating mode the I/O data sample is emitted out of the
serial port. Devices that are in Transparent operating mode discard the I/O data samples they receive
unless you enable line passing.

Digital I/O change detection
You can configure devices to transmit a data sample immediately whenever a monitored digital I/O
pin changes state. IC (DIO Change Detect) is a bitmask that determines which digital I/O lines to
monitor for a state change. If you set one or more bits in IC, the device transmits an I/O sample as
soon it observes a state change on the monitored digital I/O line(s) using edge detection.
Change detection is only applicable to digital I/O pins that are configured as digital input (3) or digital
output (4 or 5).
The figure below shows how I/O change detection can work in combination with Periodic I/O
sampling to improve sampling accuracy. In the figure, the gray dashed lines with a dot on top
represent samples taken from the monitored DIO line. The top graph shows only periodic IR samples,
the bottom graph shows a combination of IR periodic samples and IC detected changes. In the top
graph, the humps indicate that the sample was not taken at that exact moment and needed to wait
for the next IR sample period.

Note Use caution when combining change detect sampling with sleepmodes. IC only causes a sample
to be generated if a state change occurs during a wake period. If the device is sleeping when the
digital transition occurs, then no change is detected and an I/O sample is not generated.
Use periodic sampling with IR in conjunction with IC in this instance, since IR generates an I/O sample
upon wakeup and ensures that the change is properly observed.

I/O line passing
Line passing allows you to affect the output pins of one device by sampling the I/O pins of another. To
support line passing, you must configure a device to generate I/O sample data using periodic sampling
(IR (Sample Rate)) and/or change detection (IC (DIO Change Detect)).
On the device that receives I/O samples, enable line passing setting IA (I/O Input Address) with the
address of the device that has the appropriate inputs enabled. This effectively binds the outputs to a
particular device’s input. This does not affect the ability of the device to receive I/O line data from
other devices—only its ability to update enabled outputs. Set IA to 0xFFFF (broadcast address) to
affect the output using input data from any device on the network.

I/O support Digital line passing

Digi XBee3® DigiMesh 2.4 RF Module User Guide 78

Digital line passing
Digital I/O lines are mapped in pairs; pins configured as digital input on the transmitting device affect
the corresponding digital output pin on the receiving device. For example, a device that samples D5 as
an input (3) only affects D5 on the receiver if D5 is configured as an output (4 or 5).
Each digital pin has an associated timeout value. When an I/O sample is received that affects a digital
output pin, the pin returns to its configured state after the timeout period expires. For
pins D0 through D9, the associated timeout commands are T0 (D0 Timeout) through T9 (D9 Timeout).
For pins P0 through P4, the associated timeout commands are Q0 (P0 Timeout) through Q4.
Digital line passing is only available on pins D0 through P3. You cannot use UART and SPI pins for line
passing.

Example: Digital line passing
A sampling XBee3 DigiMesh RF Module is configured with the following settings:

AT command Parameter value

D2 (DIO2/ADC2/TH_SPI_CLK Configuration) 3 (digital input)

IR (Sample Rate) 0x7D0 (2 seconds)

DH (Destination Address High) 0013A200

DL (Destination Address Low) 12345678

Every two seconds, an I/O sample is generated and sent to the address specified by DH and DL. The
receiver is configured with the following settings:

AT command Parameter value

D2 (DIO2/ADC2/TH_SPI_CLK Configuration) 5 (digital output low)

T2 (D2 Output Timeout) 0x64 (10 seconds)

IA (I/O Input Address) 0013A20087654321

When this device receives an incoming I/O sample, if the source address matches the one set by IA,
the device sets the output of D2 to match the input of D2 of the receiver. This output level holds for
ten seconds before the pin returns to a digital output low state.

Analog line passing
Similar to digital line passing, analog line passing pairs the Analog I/O support of one device to a PWM
output of another. There are two PWM output pins that can simulate the voltage measured by the
ADC inputs. Be aware that ADC inputs are on different pins than the corresponding PWM outputs: AD0
corresponds to PWM0, and AD1 corresponds to PWM1. See Analog I/O support for the pinouts.
You can set the analog line passing timeout value with PT (PWM Output Timeout), which affects both
PWM output pins. You can explicitly set a PWM output level using the M0 (PWM0 Duty Cycle) and M1
(PWM1 Duty Cycle) commands, when an I/O sample is received that affects a PWM output pin, it
returns to its configured state after the PT timeout period expires.

I/O support Example: Analog line passing

Digi XBee3® DigiMesh 2.4 RF Module User Guide 79

Example: Analog line passing
A sampling device is configured with the following settings:

AT command Parameter value

DO command 2 (ADC input)

IR (Sample Rate) 0x7D0 (2 seconds)

DH (Destination Address High) 0013A200

DL (Destination Address Low) 12345678

Every two seconds, an I/O sample frame is generated and sent to the address specified by DH and DL.
The receiver is configured with the following settings:

AT command Parameter value

P0 2 (PWM output)

M0 0

PT 0x12C (30 seconds)

IA 0013A20087654321

When this device receives an incoming I/O sample, if the source address matches the one set by IA,
the device sets the PWM output of P0 to match the ADC input of D0 of the receiver. This output level
holds for thirty seconds before the pin returns to a digital output low state.

Output sample data
If a device receives an I/O sample whose address matches that set by IA (I/O Input Address), it
triggers line passing. Line passing operates whether the receiving device is operating in API or
Transparent mode.
By default, if the receiver is configured for API mode, it outputs the I/O sample frame in addition to
affecting output pins. You can suppress the I/O sample frame output by setting IU (Send I/O Sample to
Serial Port) to 0. This only suppresses I/O samples that trigger line passing, a sample generated from
a device whose address does not match the IA address is sent regardless of IU.

Output control
IO (Set Digital I/O Lines) controls the output levels of D0 (DIO0/ADC0/Commissioning Configuration)
through D7 (DIO7/CTS Configuration) that are configured as output pins (either 4 or 5). These values
override the configured output levels of the pins until they are changed again (the pins do not
automatically revert to their configured values after a timeout.)
You can use IO to trigger a sample on change detect.

I/O behavior during sleep
When the device sleeps (SM ! = 0) the I/O lines are optimized for a minimal sleep current.

I/O support I/O behavior during sleep

Digi XBee3® DigiMesh 2.4 RF Module User Guide 80

Digital I/O lines
Digital I/O lines set as digital output high or low maintain those values during sleep. Disabled or input
pins continue to be controlled by the PR/PD settings. Peripheral pins (with the exception of CTS) are
set low during sleep and SPI pins are set high. Peripheral and SPI pins resume normal operation upon
wake.
Digital I/O lines that have been set using I/O line passing hold their values during sleep, however the
digital timeout timer (T0 through T9, andQ0 through Q2) are suspended during sleep and resume
upon wake.

Analog and PWM I/O Lines
Lines configured as analog inputs or PWM output are not affected during sleep. PWM lines are shut
down (set low) during sleep and resume normal operation upon wake.
PWM output pins set by analog line passing are shutdown during sleep and revert to their preset
values (M0 andM1) on wake. This happens regardless of whether the timeout has expired or not.

Networking

Network identifiers 82
Operating channels 82
Delivery methods 82
DigiMesh networking 83
Repeater/directed broadcast 85
Encryption 86
Maximum payload 86

Digi XBee3® DigiMesh 2.4 RF Module User Guide 81

Networking Network identifiers

Digi XBee3® DigiMesh 2.4 RF Module User Guide 82

Network identifiers
You define DigiMesh networks with a unique network identifier. Use the ID command to set this
identifier. For devices to communicate, you must configure them with the same network identifier and
the same operating channel. For devices to communicate, the CH and ID commands must be equal on
all devices in the network.
The ID command directs the devices to talk to each other by establishing that they are all part of the
same network. The ID parameter allows multiple DigiMesh networks to co-exist on the same physical
channel.

Operating channels
The XBee3 DigiMesh RF Module operates over the 2.4 GHz band using direct sequence spread
spectrum (DSSS) modulation. DSSS modulation allows the device to operate over a channel or
frequency that you specify.
The 2.4 GHz frequency band defines 16 operating channels. The XBee3 DigiMesh RF Module supports
all 16 channels, but output power on channel 26 on the XBee3 PRO RF Module is limited.
Use the CH command to select the operating channel on a device. CH tells the device the frequency to
use to communicate.
For devices to communicate, the CH and ID commands must be equal on all devices in the network.
Note these requirements for communication:

n A device can only receive data from other devices within the same network (with the same ID
value) and using the same channel (with the same CH value).

n A device can only transmit data to other devices within the same network (with the same ID
value) and using the same channel (with the same CH value).

Delivery methods
The TO (Transmit Options) command sets the default delivery method that the device uses when in
Transparent mode. In API mode, the TxOptions field of the API frame overrides the TO command, if
non-zero.
The XBee3 DigiMesh RF Module supports three delivery methods:

n Point-to-multipoint (TO = 0x40).
n Repeater (directed broadcast) (TO = 0x80).
n DigiMesh (TO = 0xC0).

Point-to-multipoint
To select point-to-multipoint, set the transmit options to 0x40.
In Transparent mode, use the TO (Transmit Options) command to set the transmit options.
In API mode, use the Transmit Request (0x10) and Explicit Addressing Command (0x11) frames to set
the transmit options. However, if the transmit options in the API frame are zero, then the transmit
options in the TO command apply.
Point-to-multipoint transmissions occur between two adjacent nodes within RF range. No route
discovery and no routing occur for these types of transmissions. The networking layer is entirely
skipped.

Networking DigiMesh networking

Digi XBee3® DigiMesh 2.4 RF Module User Guide 83

Point-to-multipoint has an advantage over DigiMesh for two adjacent devices due to less overhead.
However, it cannot work over multiple hops.

DigiMesh networking
A mesh network is a topology in which each node in the network is connected to other nodes around
it. Each node cooperates in transmitting information. Mesh networking provides these important
benefits:

n Routing. With this technique, the message is propagated along a path by hopping from node to
node until it reaches its final destination.

n Ad-hoc network creation. This is an automated process that creates an entire network of
nodes on the fly, without any human intervention.

n Self-healing. This process automatically figures out if one or more nodes on the network is
missing and reconfigures the network to repair any broken routes.

n Peer-to-peer architecture. No hierarchy and no parent-child relationships are needed.
n Quiet protocol. Routing overhead will be reduced by using a reactive protocol similar to AODV.
n Route discovery. Rather than maintaining a network map, routes will be discovered and

created only when needed.
n Selective acknowledgments. Only the destination node will reply to route requests.
n Reliable delivery. Reliable delivery of data is accomplished by means of acknowledgments.

With mesh networking, the distance between two nodes does not matter as long as there are enough
nodes in between to pass the message along. When one node wants to communicate with another,
the network automatically calculates the best path.
A mesh network is also reliable and offers redundancy. For example, If a node can no longer operate
because it has been removed from the network or because a barrier blocks its ability to communicate,
the rest of the nodes can still communicate with each other, either directly or through intermediate
nodes.

Note Mesh networks use more bandwidth for routing than point-to-multipoint networks and
therefore have less available for payloads.

Networking DigiMesh networking

Digi XBee3® DigiMesh 2.4 RF Module User Guide 84

Broadcast addressing
All of the routers in a network receive and repeat broadcast transmissions. Broadcast transmissions
do not use ACKs, so the sending device sends the broadcast multiple times. By default, the sending
device sends a broadcast transmission four times. The transmissions become automatic retries
without acknowledgments. This results in all nodes repeating the transmission four times as well.
In order to avoid RF packet collisions, the network inserts a random delay before each router relays
the broadcast message. You can change this random delay time with the NN parameter.
Sending frequent broadcast transmissions can quickly reduce the available network bandwidth. Use
broadcast transmissions sparingly.
The broadcast address is a 64 bit address with the lowest 16 bits set to 1. The upper bits are set to 0.
To send a broadcast transmission:

n Set DH to 0.
n Set DL to 0xFFFF.

In API operating mode, this sets the destination address to 0x000000000000FFFF.

Unicast addressing
When devices transmit using DigiMesh unicast, the network uses retries and acknowledgments
(ACKs) for reliable data delivery. In a retry and acknowledgment scheme, for every data packet that a
device sends, the receiving device must send an acknowledgment back to the transmitting device to
let the sender know that the data packet arrived at the receiver. If the transmitting device does not
receive an acknowledgment then it re-sends the packet. It sends the packet a finite number of times
before the system times out.
The MR (Mesh Network Retries) parameter determines the number of mesh network retries. The
sender device transmits RF data packets up toMR + 1 times across the network route, and the
receiver transmits ACKs when it receives the packet. If the sender does not receive a network ACK
within the time it takes for a packet to traverse the network twice, the sender retransmits the
packet.
If a device sends a unicast that uses both MAC and NWK retries and acknowledgments:

n Use MAC retries and acknowledgments for transmissions between adjacent devices in the
route.

n Use NWK retries and acknowledgments across the entire route.

To send unicast messages while in Transparent operating mode, set the DH and DL on the
transmitting device to match the corresponding SH and SL parameter values on the receiving device.

Route discovery
Route discovery is a process that occurs when:

1. The source node does not have a route to the requested destination.
2. A route fails. This happens when the source node uses up its network retries without receiving

an ACK.

Route discovery begins by the source node broadcasting a route request (RREQ). We call any router
that receives the RREQ and is not the ultimate destination, an intermediate node.
Intermediate nodes may either drop or forward a RREQ, depending on whether the new RREQ has a
better route back to the source node. If so, the node saves, updates and broadcasts the RREQ.

Networking Repeater/directed broadcast

Digi XBee3® DigiMesh 2.4 RF Module User Guide 85

When the ultimate destination receives the RREQ, it unicasts a route reply (RREP) back to the source
node along the path of the RREQ. It does this regardless of route quality and regardless of how many
times it has seen an RREQ before.
This allows the source node to receive multiple route replies. The source node selects the route with
the best round trip route quality, which it uses for the queued packet and for subsequent packets with
the same destination address.

Routing
A device within a mesh network determines reliable routes using a routing algorithm and table. The
routing algorithm uses a reactive method derived from Ad-hoc On-demand Distance Vector (AODV).
The firmware uses an associative routing table to map a destination node address with its next hop. A
device sends a message to the next hop address, and the message either reaches its destination or
forwards to an intermediate router that routes the message on to its destination.
If a message has a broadcast address, it is broadcast to all neighbors, then all routers that receive the
message rebroadcast the message MT+1 times. Eventually, the message reaches the entire network.
Packet tracking prevents a node from resending a broadcast message more thanMT+1 times. This
means that a node that relays a broadcast will only relay it after it receives it the first time and it will
discard repeated instances of the same packet.

Routers
You can use the CE command to configure devices in a DigiMesh network to act as routers or end
devices. All devices in a DigiMesh network act as routers by default. Any devices that you configure as
routers actively relay network unicast and broadcast traffic.

Repeater/directed broadcast
All of the routers in a network receive and repeat directed broadcast transmissions. Because it does
not use ACKs, the originating node sends the broadcast multiple times. By default a broadcast
transmission is sent four times—the extra transmissions become automatic retries without
acknowledgments. This results in all nodes repeating the transmission four times. Sending frequent
broadcast transmissions can quickly reduce the available network bandwidth, so use broadcast
transmissions sparingly.

MAC layer
The MAC layer is the building block that is used to build repeater capability. To implement Repeater
mode, we use a network layer header that comes after the MAC layer header in each packet. In this
network layer there is additional packet tracking to eliminate duplicate broadcasts.
In this delivery method, the device sends both unicast and broadcast packets out as broadcasts that
are always repeated. All repeated packets are sent to every device. The devices that receive the
broadcast send broadcast data out their serial port.
When a device sends a unicast, it specifies a destination address in the network header. Then, only the
device that has the matching destination address sends the unicast out its serial port. This is called a
directed broadcast.
Any node that has a CE parameter set to router rebroadcasts the packet if its BH (broadcast hops) or
broadcast radius values are not depleted. If a node has already seen a repeated broadcast, it ignores
the broadcast.
The BH parameter sets the maximum number of hops that a broadcast is repeated, but there are two
special cases. If BH is 0 or if BH is > NH, then NH specifies the maximum hops for broadcasts instead.

Networking Encryption

Digi XBee3® DigiMesh 2.4 RF Module User Guide 86

By default the CE parameter is set to route all broadcasts. As such, all nodes that receive a repeated
packet will repeat it. If you change the CE parameter, you can limit which nodes repeat packets, which
helps dense networks from becoming overly congested while packets are being repeated.
Transmission timeout calculations for Repeater/directed broadcast mode are the same as for
DigiMesh broadcast transmissions.
The MAC layer is the building block that is used to build repeater capability. To implement Repeater
mode, we use a network layer header that comes after the MAC layer header in each packet. In this
network layer there is additional packet tracking to eliminate duplicate broadcasts.

Encryption
XBee3 DigiMesh provides greater security against replay attacks and attempts to determine the
plaintext. The XBee3 DigiMesh RF Module performs Counter (CTR) mode encryption instead of
Electronic Codebook (ECB) mode encryption. Since the counter is passed over-the-air (OTA) and
changes with each frame, the same text is always encrypted differently and there are no known
attacks to determine the plaintext from the ciphertext.
A side effect of this implementation is that the maximum payload is reduced by the size of the counter
(8 bytes). Therefore, no frames can exceed 65 bytes with encryption enabled. The maximum payload is
still 73 bytes with encryption disabled.
Also effective with XBee3 DigiMesh, the key is 256 bits rather than 128 bits. 256 bits is 32 bytes. Since
the key is entered with ASCII HEX characters in Commandmode, up to 64 ASCII HEX characters may
be entered for the KY command.
For compatibility with nodes in the same network that do not support CTR mode encryption, C8
(Compatibility Options) bit 2 was introduced to enable the 128-bit key with ECB mode encryption as
supported previously. In this case, only the last 32 ASCII HEX characters of the key are used, even if
more characters were previously entered for the key.

Maximum payload
DigiMesh uses the 802.15.4 PHY layer including a 2-byte CRC at the end of the frame. This reduces the
size of each frame to 125 bytes. After the MAC header, the NWK header, and the APP header are
included at the beginning of the packet, the remaining space is 73 bytes for payload. If CTR mode
encryption is enabled, this number is further reduced to 65 bytes. The best way to determine the
maximum payload is to read NP (Maximum Packet Payload Bytes).
These maximums only apply in API mode. If you attempt to send an API packet with a larger payload
than specified, the device responds with a Transmit Status frame (0x89) with the Status field set to 74
(Data payload too large).
In Transparent mode, the firmware splits the data as necessary to cope with maximum payloads.

Network commissioning and diagnostics

We call the process of discovering and configuring devices in a network for operation, "network
commissioning." Devices include several device discovery and configuration features. In addition to
configuring devices, you must develop a strategy to place devices to ensure reliable routes. To
accommodate these requirements, modules include features to aid in placing devices, configuring
devices, and network diagnostics.

Local configuration 88
Remote configuration 88
Build aggregate routes 89
RSSI indicators 93
Associate LED 93
The Commissioning Pushbutton 93
Node discovery 95

Digi XBee3® DigiMesh 2.4 RF Module User Guide 87

Network commissioning and diagnostics Local configuration

Digi XBee3® DigiMesh 2.4 RF Module User Guide 88

Local configuration
You can configure devices locally using serial commands in Commandmode or API mode, or remotely
using remote AT commands. Devices that are in API mode can send configuration commands to set or
read the configuration settings of any device in the network.

Remote configuration
When you do not have access to the device's serial port, you can use a separate device in API mode to
remotely configure it. To remotely configure devices, use the following steps.

Send a remote command
To send a remote command, populate the Remote AT Command Request frame - 0x17 with:

1. The 64-bit address of the remote device.
2. The correct command options value.
3. Optionally, the command and parameter data.
4. If you want a command response, set the Frame ID field to a non-zero value.

XCTU has a Frames Generator tool that can assist you with building and sending a remote AT frame;
see Frames generator tool in the XCTU User Guide.

Apply changes on remote devices
When you use remote commands to change the command parameter settings on a remote device,
you must apply the parameter changes or they do not take effect. For example, if you change the BD
parameter, the actual serial interface rate does not change on the remote device until you apply the
changes. You can apply the changes using remote commands in one of three ways:

1. Set the apply changes option bit in the API frame.
2. Send an AC command to the remote device.
3. Send the WR command followed by the FR command to the remote device to save the changes

and reset the device.

Remote command response
If a local device sends a command request to a remote device, and the API frame ID is non-zero, the
remote device sends a remote command response transmission back to the local device.

When the local device receives a remote command response transmission, it sends a remote
command response API frame out its UART. The remote command response indicates:

1. The status of the command, which is either success or the reason for failure.
2. In the case of a command query, it includes the register value.

The device that sends a remote command does not receive a remote command response frame if:

1. It could not reach the destination device.
2. You set the frame ID to 0 in the remote command request.

http://www.digi.com/resources/documentation/digidocs/90001458-13/default.htm#reference/r_frames_generator_tool.htm

Network commissioning and diagnostics Build aggregate routes

Digi XBee3® DigiMesh 2.4 RF Module User Guide 89

Build aggregate routes
In many applications, many or all of the nodes in the network must transmit data to a central
aggregator node. In a new DigiMesh network, the overhead of these nodes discovering routes to the
aggregator node can be extensive and taxing on the network. To eliminate this overhead, you can use
the AG command to automatically build routes to an aggregate node in a DigiMesh network.
To send a unicast, devices configured for Transparent mode (AP = 0) must set their DH/DL registers to
the MAC address of the node that they need to transmit to. In networks of Transparent mode devices
that transmit to an aggregator node it is necessary to set every device's DH/DL registers to the MAC
address of the aggregator node. This can be a tedious process. A simple and effective method is to use
the AG command to set the DH/DL registers of all the nodes in a DigiMesh network to that of the
aggregator node.
Upon deploying a DigiMesh network, you can issue the AG command on the desired aggregator node
to cause all nodes in the network to build routes to the aggregator node. You can optionally use the
AG command to automatically update the DH/DL registers to match the MAC address of the
aggregator node.
The AG command requires a 64-bit parameter. The parameter indicates the current value of the
DH/DL registers on a device; typically you should replace this value with the 64-bit address of the node
sending the AG broadcast. However, if you do not want to update the DH/DL of the device receiving
the AG broadcast you can use the invalid address of 0xFFFE. The receiving nodes that are configured
in API mode output an Aggregator Update API frame (0x8E) if they update their DH/DL address; for a
description of the frame, see Aggregate Addressing Update frame - 0x8E.
All devices that receive an AG broadcast update their routing table information to build a route to the
sending device, regardless of whether or not their DH/DL address is updated. The devices use this
routing information for future DigiMesh unicast transmissions.

DigiMesh routing examples

Example one
In a scenario where you deploy a network, and then you want to update the DH and DL registers of all
the devices in the network so that they use the MAC address of the aggregator node, which has the
MAC address 0x0013A200 4052C507, you could use the following technique.

1. Deploy all devices in the network with the default DH/DL of 0xFFFF.
2. Serially, send an ATAGFFFF command to the aggregator node so it sends the broadcast

transmission to the rest of the nodes.

All the nodes in the network that receive the AG broadcast set their DH to 0x0013A200 and their DL to
0x4052C507. These nodes automatically build a route to the aggregator node.

Example two
If you want all of the nodes in the network to build routes to an aggregator node with a MAC address
of 0x0013A200 4052C507 without affecting the DH and DL registers of any nodes in the network:

1. Send the ATAGFFFE command to the aggregator node. This sends an AG broadcast to all of the
nodes in the network.

2. All of the nodes internally update only their routing table information to contain a route to the
aggregator node.

Network commissioning and diagnostics Build aggregate routes

Digi XBee3® DigiMesh 2.4 RF Module User Guide 90

3. None of the nodes update their DH and DL registers because none of the registers are set to
the 0xFFFE address.

Replace nodes
You can use the AG command to update the routing table and DH/DL registers in the network after
you replace a device. To update only the routing table information without affecting the DH and DL
registers, use the process in example two, above.
To update the DH and DL registers of the network, use the following example.

Example
This example shows how to cause all devices to update their DH and DL registers to the MAC address
of the sending device. In this case, assume you are using a device with a serial number of 0x0013A200
4052C507 as a network aggregator, and the sending device has a MAC address of 0x0013A200
F5E4D3B2 To update the DH and DL registers to the sending device's MAC address:

1. Replace the aggregator with 0x0013A200 F5E4D3B2.
2. Send the ATAG0013A200 4052C507 command to the new device.

Test links between adjacent devices
It often helps to test the quality of a link between two adjacent modules in a network. You can use the
Test Link Request Cluster ID to send a number of test packets between any two devices in a network.
To clarify the example, we refer to "device A" and "device B" in this section.
To request that device B perform a link test against device A:

1. Use device A in API mode (AP = 1) to send an Explicit Addressing Command (0x11) frame to
device B.

2. Address the frame to the Test Link Request Cluster ID (0x0014) and destination endpoint: 0xE6.
3. Include a 12-byte payload in the Explicit Addressing Command frame with the following format:

Number of
bytes Field name Description

8 Destination
address

The address the device uses to test its link. For this example, use the
device A address.

2 Payload size The size of the test packet. Use the NP command to query the
maximum payload size for the device.

2 Iterations The number of packets to send. This must be a number between 1 and
4000.

4. Device B should transmit test link packets.
5. When device B completes transmitting the test link packets, it sends the following data packet

to device A's Test Link Result Cluster (0x0094) on endpoint (0xE6).
6. Device A outputs the following information as an API Explicit RX Indicator (0x91) frame:

Network commissioning and diagnostics Build aggregate routes

Digi XBee3® DigiMesh 2.4 RF Module User Guide 91

Number of
bytes Field name Description

8 Destination
address

The address the device used to test its link.

2 Payload size The size of the test packet device A sent to test the link.

2 Iterations The number of packets that device A sent.

2 Success The number of packets that were successfully
acknowledged.

2 Retries The number of MAC retries used to transfer all the packets.

1 Result 0x00 - the command was successful.
0x03 - invalid parameter used.

1 RR The maximum number of MAC retries allowed.

1 maxRSSI The strongest RSSI reading observed during the test.

1 minRSSI The weakest RSSI reading observed during the test.

1 avgRSSI The average RSSI reading observed during the test.

Example
Suppose that you want to test the link between device A (SH/SL = 0x0013A200 40521234) and device
B (SH/SL=0x0013A 200 4052ABCD) by transmitting 1000 40-byte packets:
Send the following API packet to the serial interface of device A.
In the following example packet, whitespace marks fields, bold text is the payload portion of the
packet:
7E 0020 11 01 0013A20040521234 FFFE E6 E6 0014 C105 00 00 0013A2004052ABCD 0028 03E8 EB
When the test is finished, the following API frame may be received:
7E 0027 91 0013A20040521234 FFFE E6 E6 0094 C105 00 0013A2004052ABCD 0028 03E8 03E7 0064
00 0A 50 53 52 9F
This means:

n 999 out of 1000 packets were successful.
n The device made 100 retries.
n RR = 10.
n maxRSSI = -80 dBm.
n minRSSI = -83 dBm.
n avgRSSI = -82 dBm.

If the Result field does not equal zero, an error has occurred. Ignore the other fields in the packet.
If the Success field equals zero, ignore the RSSI fields.
The device that sends the request for initiating the Test link and outputs the result does not need to
be the sender or receiver of the test. It is possible for a third node, "device C", to request device A to
perform a test link against device B and send the results back to device C to be output. It is also
possible for device B to request device A to perform the previously mentioned test. In other words, the
frames can be sent by either device A, device B or device C and in all cases the test is the same: device
A sends data to device B and reports the results.

Network commissioning and diagnostics Build aggregate routes

Digi XBee3® DigiMesh 2.4 RF Module User Guide 92

Trace route option
In many networks, it is useful to determine the route that a DigiMesh unicast takes to its destination,
particularly when you set up a network or want to diagnose problems within a network.

Note Because of the large number of Route Information Packet frames that a unicast with trace
route enabled can generate, we suggest you only use the trace route option for occasional diagnostic
purposes and not for normal operations.

The Transmit Request (0x10 and 0x11) frames contain a trace route option, which transmits routing
information packets to the originator of the unicast using the intermediate nodes.
When a device sends a unicast with the trace route option enabled, the unicast transmits to its
destination devices, which forward the unicast to its eventual destination. The destination device
transmits a Route Information Packet (0x8D) frame back along the route to the unicast originator.
The Route Information Packet frame contains:

n Addressing information for the unicast
n Addressing information for the intermediate hop
n Timestamp
n Other link quality information

For a full description of the Route Information Packet frame, see Route Information Packet frame -
0x8D.

Trace route example
Suppose that you successfully unicast a data packet with trace route enabled from device A to device
E, through devices B, C, and D. The following sequence would occur:

n After the data packet makes a successful MAC transmission from device A to device B, device A
outputs a Route Information Packet frame indicating that the transmission of the data packet
from device A to device E was successful in forwarding one hop from device A to device B.

n After the data packet makes a successful MAC transmission from device B to device C, device B
transmits a Route Information Packet frame to device A. When device A receives the Route
Information packet, it outputs it over its serial interface.

n After the data packet makes a successful MAC transmission from device C to device D, device C
transmits a Route Information Packet frame to device A (through device B). When device A
receives the Route Information packet, it outputs it over its serial interface.

n After the data packet makes a successful MAC transmission from device D to device E, device D
transmits a Route Information Packet frame to device A (through device C and device B). When
device A receives the Route Information packet, it outputs it over its serial interface.

There is no guarantee that Route Information Packet frames will arrive in the same order as the
route taken by the unicast packet. On a weak route, it is also possible for the transmission of Route
Information Packet frames to fail before arriving at the unicast originator.

NACK messages
Transmit Request (0x10 and 0x11) frames contain a negative-acknowledge character (NACK) API
option (Bit 2 of the Transmit Options field).

Network commissioning and diagnostics RSSI indicators

Digi XBee3® DigiMesh 2.4 RF Module User Guide 93

If you use this option when transmitting data, when a MAC acknowledgment failure occurs on one of
the hops to the destination device, the device generates a Route Information Packet (0x8D) frame
and sends it to the originator of the unicast.
This information is useful because it allows you to identify and repair marginal links.

RSSI indicators
The received signal strength indicator (RSSI) measures the amount of power present in a radio signal.
It is an approximate value for signal strength received on an antenna.
You can use the DB command to measure the RSSI on a device. DB returns the RSSI value measured in
-dBm of the last packet the device received. This number can be misleading in multi-hop DigiMesh
networks. The DB value only indicates the received signal strength of the last hop. If a transmission
spans multiple hops, the DB value provides no indication of the overall transmission path, or the
quality of the worst link, it only indicates the quality of the last link.
To determine the DB value in hardware:

1. Set PO to 1 to enable the RSSI pulse-width modulation (PWM) functionality.
2. Use the DIO10/RSSI/PWM0 module pin (Micro pin 7/SMT pin 7/TH pin 6). When the device

receives data, it sets the RSSI PWM duty cycle to a value based on the RSSI of the packet it
receives.

This value only indicates the quality of the last hop of a multi-hop transmission. You could connect this
pin to an LED to indicate if the link is stable or not.

Associate LED
The Associate pin (Micro pin 26/SMT pin 28) provides an indication of the device's status. To take
advantage of these indications, connect an LED to the Associate pin.
To enable the Associate LED functionality, set the D5 command to 1; it is enabled by default. If
enabled, the Associate pin is configured as an output. This section describes the behavior of the pin.
The pin functions as a power indicator.
Use the LT command to override the blink rate of the Associate pin. If you set LT to 0, the device uses
the default blink time of 250 ms.
The following table describes the Associate LED functionality.

LED Status Meaning

On, blinking The device has power and is operating properly

The Commissioning Pushbutton
The XBee3 DigiMesh RF Module supports a set of commissioning and LED functions to help you deploy
and commission devices. These functions include the Commissioning Pushbutton definitions and the
associated LED functions. The following diagram shows how the hardware can support these features.

Network commissioning and diagnostics The Commissioning Pushbutton

Digi XBee3® DigiMesh 2.4 RF Module User Guide 94

To support the Commissioning Pushbutton and its associated LED functions, connect a pushbutton
and an LED to device pins 20 and 15 respectively.

Definitions
To enable the Commissioning Pushbutton functionality on pin 20, set the D0 command to 1. The
functionality is enabled by default.
You must perform the designated number of button presses within two seconds. If any number of
commissioning button presses occur while the device is asleep, it will wake up until the sleep cycle is
finished or for 30 seconds, whichever occurs first.
The following table provides the pushbutton definitions.

Button
presses Action

1 Sends a Node Identification broadcast transmission. All devices that receive this
transmission blink their Associate LED rapidly for one second. Additionally, receiving
devices that are operating in API mode also send a Node Identification frame (0x95) out
their UART.

2 This function only applies for synchronous sleep networks. Two button presses nominate
a node as the sleep coordinator by sending out a sync message. If the sending node has
seniority over the current sleep coordinator, the sending node becomes the sleep
coordinator. Otherwise, the current sleep coordinator retains that role.

4 Restores the node to default configuration. If custom defaults are in use, they will be
applied on top of the factory defaults. Unlike RE (Restore Defaults), this function not only
restores the default configuration, but it also applies those changes.

Use the Commissioning Pushbutton
Use the CB command to simulate button presses in software. Send CB with a parameter set to the
number of button presses to perform. For example, if you send ATCB1, the device performs the action
(s) associated with a single button press.
Node Identification Indicator frame - 0x95 is similar to Remote Command Response frame - 0x97 – it
contains the device’s address, node identifier string (NI command), and other relevant data. All
devices in API operating mode that receive the Node Identification Indicator frame send it out their
UART as a Node Identification Indicator frame.

Network commissioning and diagnostics Node discovery

Digi XBee3® DigiMesh 2.4 RF Module User Guide 95

Node discovery
Node discovery has three variations as shown in the following table:

Commands Syntax Description

Node Discovery ND Seeks to discover all nodes in the network (on the current
Network ID).

Directed Node
Discovery

ND <NI
String>

Seeks to discover if a particular node named <NI String> is found
in the network.

Destination Node DN <NI
String>

Sets DH/DL to point to the MAC address of the node whose <NI
String> matches.

The node discovery command (without an NI string designated) sends out a broadcast to every node
in the Network ID. Each node in the network sends a response back to the requesting node.
When the node discovery command is issued in Commandmode, all other AT commands are inhibited
until the node discovery command times out, as determined by the N? parameter. After the timeout,
an extra CR is output to the terminal window, indicating that new AT commands can be entered. This
is the behavior whether or not there were any nodes that responded to the broadcast.
When the node discovery command is issued in API mode, the behavior is the same except that the
response is output in API mode. If no nodes respond, there will be no responses at all to the node
discover command. The requesting node is not able to process a new AT command untilN? times out.

Discover all the devices on a network
You can use the ND (Network Discovery) command to discover all devices on a network. When you
send the ND command:

1. The device sends a broadcast ND command through the network.
2. All devices that receive the command send a response that includes their addressing

information, node identifier string and other relevant information. For more information on the
node identifier string, see NI (Network Identifier).

ND is useful for generating a list of all device addresses in a network.
When a device receives the network discovery command, it waits a random time before sending its
own response. You can use the NT command to set the maximum time delay on the device that you
use to send the ND command.

n The device that sends the ND includes its NT setting in the transmission to provide a random
delay window for all devices in the network. When devices respond at random intervals during
the NTwindow, fewer collisions occur andmore responses can be obtained.

n The default NT value is 0x82 (13 seconds).

Directed node discovery
The directed node discovery command (NDwith an NI string parameter) sends out a broadcast to find
a node in the network with a matching NI string. If such a node exists, it sends a response with its
information back to the requesting node.
In Transparent mode, the requesting node outputs an extra carriage return following the response
from the designated node and the command terminates; it is then ready to accept a new AT

Network commissioning and diagnostics Node discovery

Digi XBee3® DigiMesh 2.4 RF Module User Guide 96

command. In the event that the requested node does not exist or is too slow to respond, the
requesting node outputs an ERROR response after N? expires.
In API mode, the response from the requesting node will be output in API mode and the command will
terminate immediately. If no response comes from the requested node, the requesting node outputs
an error response in API mode after N? expires. The device's software assumes that each node has a
unique NI string.
The directed node discovery command terminates after the first node with a matching NI string
responds. If that NI string is duplicated in multiple nodes, the first responding node may not always be
the same node or the desired node.

Destination Node
The Destination Node command (DN with an NI string parameter) sends out a broadcast containing
the NI string being requested. The responding node with a matching NI string sends its information
back to the requesting node. The local node then sets DH/DL to match the address of the responding
node. As soon as this response occurs, the command terminates successfully. If the device is in AT
Commandmode, an OK string is output and Commandmode exits. In API mode, you may enter
another AT command.
If an NI string parameter is not provided, the DN command terminates immediately with an error. If a
node with the given NI string does not respond, the DN command terminates with an error after N?
times out.
In Transparent mode, unlike ND (with or without an NI string), DN does not cause the information
from the responding node to be output; rather it simply sets DH/DL to the address of the responding
node.
In API mode, the response from the requesting node outputs in API mode and the command
terminates immediately. If no response comes from the requested node, the requesting node outputs
an error response in API mode after N? expires.
The device's software assumes that each node has a unique NI string. The directed destination node
command terminates after the first node with a matching NI string responds. If that NI string is
duplicated in multiple nodes, DH/DL may not be set to the desired value.

Discover devices within RF range
The FN (Find Neighbor) command works the same as the ND (Node Discovery) except that it is limited
to neighboring devices (devices that are only one hop away). See FN (Find Neighbors) for details.

n You can use the FN (Find Neighbors) command to discover the devices that are immediate
neighbors (within RF range) of a particular device.

n FN is useful in determining network topology and determining possible routes.

You can send FN locally on a device in Commandmode or you can use a local AT Command Frame -
0x08.
To use FN remotely, send the target node a Remote AT Command Request frame - 0x17 using FN as
the name of the AT command.
The device you use to send FN transmits a zero-hop broadcast to all of its immediate neighbors. All of
the devices that receive this broadcast send an RF packet to the device that transmitted the FN
command. If you sent FN remotely, the target devices respond directly to the device that sent the FN
command. The device that sends FN outputs a response packet in the same format as an AT
Command Response frame - 0x88.

Sleep support

Sleep is implemented to support installations where a mains power source is not available and a
battery is required. In order to increase battery life, the device sleeps, which means it stops operating.
It can be woken by a timer expiration or a pin.

Sleepmodes 98
Sleep parameters 100
Sleep pins 100
Sleep conditions 101
The sleep timer 101
Sleep coordinator sleepmodes in the network 102
Synchronization messages 102
Become a sleep coordinator 104
Select sleep parameters 106
Start a sleeping synchronous network 107
Add a new node to an existing network 108
Change sleep parameters 108
Rejoin nodes that lose sync 109
Diagnostics 110

Digi XBee3® DigiMesh 2.4 RF Module User Guide 97

Sleep support Sleep modes

Digi XBee3® DigiMesh 2.4 RF Module User Guide 98

Sleep modes
A number of low-power modes exist to enable devices to operate for extended periods of time on
battery power. Use SM (Sleep Mode) to enable these sleepmodes. The sleepmodes are characterized
as either:

n Asynchronous (SM = 1, 4, 5, 6).
n Synchronous (SM = 7, 8).

In Synchronous sleep networks, a device functions in one of three roles:

1. A sleep coordinator.
2. A potential coordinator.
3. A non-coordinator.

The difference between a potential coordinator and a non-coordinator is that a non-coordinator node
has its SO (Sleep Options) parameter set so that it will not participate in coordinator nomination and
election and cannot ever be a sleep coordinator.

Note Synchronous and asynchronous sleepmodes are incompatible. Synchronous and asynchronous
sleep nodes should not be configured in the same network.

Asynchronous sleep modes
Use the asynchronous sleepmodes to control the sleep state on a device by device basis.
Do not use devices operating in asynchronous sleepmode to route data.
We strongly encourage you to set asynchronous sleeping devices as end-devices using CE (Routing /
Messaging Mode). This prevents the node from attempting to route data.

Asynchronous Pin Sleep mode (SM = 1)
Pin Sleepmode minimizes quiescent power (power consumed when in a state of rest or inactivity). In
order to use Pin Sleepmode, configure SM (Sleep Mode) to 1 and configure D8 (DIO8/DTR/SLP_
Request Configuration) (Micro pin 9/SMT pin 10) for DTR/SLEEP_RQ input (D8 = 1). This mode is
voltage level-activated; when SLEEP_RQ is asserted, the device finishes any transmit or receive
activities, enters Idle mode, and then enters a state of sleep. The device does not respond to either
serial or RF activity while in pin sleep.
To wake a sleeping device operating in Pin Sleepmode, de-assert DTR/SLEEP_RQ. The device wakes
when SLEEP_RQ is de-asserted and is ready to transmit or receive when the CTS line is low. When
waking the device, the pin must be de-asserted at least two 'byte times' after CTS goes low. This
assures that there is time for the data to enter the DI buffer.
Devices with SPI functionality can use the SPI_SSEL pin instead of D8 for pin sleep control. If D8 = 0
and P7 = 1, SPI_SSEL takes the place of DTR/SLEEP_RQ and functions as described above. In order to
use SPI_SSEL for sleep control while communicating on the UART, the other SPI pins must be disabled
(P5, P6, and P8 set to 0). See Low power operation for information on using SPI_SSEL for sleep control
while communicating over SPI.

Asynchronous Cyclic Sleep mode (SM = 4)
The Cyclic Sleepmodes allow devices to periodically check for RF data. When the SM parameter is set
to 4, the XBee3 DigiMesh RF Module is configured to sleep, then wakes once per cycle to check for
data from a coordinator. The Cyclic Sleep Remote sends a poll request to the coordinator at a specific

Sleep support Sleep modes

Digi XBee3® DigiMesh 2.4 RF Module User Guide 99

interval set by SP (Sleep Time). The coordinator transmits any queued data addressed to that specific
remote upon receiving the poll request.
If no data is queued for the remote, the messaging coordinator does not transmit and the remote
returns to sleep for another cycle. If queued data is transmitted back to the remote, it stays awake to
allow for back and forth communication until the ST (Wake Time) timer expires. You can also set SO
(Sleep Options) bit 8 to force the device to always wake for the full ST time.
If configured, CTS goes low each time the remote wakes, allowing for communication initiated by the
remote host if desired. If ON_SLEEP is configured it goes high (ON) after SN (Number of Sleep Periods)
sleep periods. Change SN to allow external circuitry to sleep for longer periods if no data is received.

Asynchronous Cyclic Sleep with Pin Wake-up mode (SM = 5)
Use this mode to wake a sleeping remote device through either the RF interface or by asserting (low)
DTR/SLEEP_RQ for event-driven communications. The cyclic sleepmode works as described previously
with the addition of a pin-controlled wake-up at the remote device.
The DTR/SLEEP_RQ pin is level-triggered. The device wakes when a low is detected then sets CTS low
as soon as it is ready to transmit or receive. The device stays awake as long as DTR/SLEEP_RQ is low;
once DTR/SLEEP_RQ goes high the device returns to cyclic sleep operation. If DTR/SLEEP_RQ is
momentarily pulsed low, the minimum wake time is ST (Wake Time) even if DTR/SLEEP_RQ is low for
less time.
Once awake, any activity resets the ST (Wake Time) timer, so the device goes back to sleep only after
there is no RF activity for the duration of the timer.

MicroPython sleep with optional pin wake (SM = 6)
The MicroPython sleep option allows a user's MicroPython program to exclusively control the device's
sleep operation (with optional pin wake). For full details refer to the Digi MicroPython Programming
Guide.

Synchronous sleep modes
Synchronous sleepmakes it possible for all nodes in the network to synchronize their sleep and wake
times. All synchronized cyclic sleep nodes enter and exit a low power state at the same time. This
allows all or most devices in a network to use low power because, unlike Zigbee, low power devices do
not need to be adjacent to mains powered devices.
Synchronous sleep forms a cyclic sleeping network with these features:

n A device acting as a sleep coordinator sends a special RF packet called a sync message to
synchronize nodes.

n To make a device in the network a coordinator, a node uses several resolution criteria.
n The sleep coordinator sends one sync message at the beginning of each wake period. The

coordinator sends the sync message as a broadcast and every routing node in the network
repeats it.

n You can change the sleep and wake times for the entire network by locally changing the
settings on an individual device. The network uses the most recently set sleep settings.

Synchronous sleep support mode (SM = 7)

Note Sleep support nodes should be mains powered because they do not sleep.

https://www.digi.com/resources/documentation/Digidocs/90002219/
https://www.digi.com/resources/documentation/Digidocs/90002219/

Sleep support Sleep parameters

Digi XBee3® DigiMesh 2.4 RF Module User Guide 100

Set SM to 7 to enter synchronous sleep support mode.
A device in synchronous sleep support mode synchronizes itself with a sleeping network but will not
itself sleep. At any time, the device responds to new devices that are attempting to join the sleeping
network with a sync message. A sleep support device only transmits normal data when the other
devices in the sleeping network are awake. You can use sleep support devices as sleep coordinator
devices and as aids in adding new devices to a sleeping network.

Synchronous cyclic sleep mode (SM = 8)
Set SM to 8 to enter synchronous cyclic sleepmode.
A device in synchronous cyclic sleepmode sleeps for a programmed time, wakes in unison with other
nodes, exchanges data and sync messages, and then returns to sleep. While asleep, it cannot receive
RF messages or receive data (including commands) from the UART port.
Generally, the network’s sleep coordinator specifies the sleep and wake times based on its SP and ST
settings. The device only uses these parameters at startup until the device synchronizes with the
network.
When a device has synchronized with the network, you can query its sleep and wake times with the
OS andOW commands respectively.
If D9 = 1 (ON_SLEEP enabled) on a cyclic sleep node, the ON_SLEEP line goes high when the device is
awake and goes low when the device is asleep.
If D7 = 1, the device de-asserts CTS while asleep.
A newly-powered, unsynchronized, sleeping device polls for a synchronizedmessage and then sleeps
for the period that the SP command specifies, repeating this cycle until it synchronizes by receiving a
sync message. Once it receives a sync message, the device synchronizes itself with the network.

Note Configure all nodes in a synchronous sleep network to operate in either synchronous sleep
support mode or synchronous cyclic sleepmode. asynchronous sleeping nodes are not compatible
with synchronous sleeping nodes.

Sleep parameters
The following AT commands are associated with the sleepmodes. See the linked commands for the
parameter's description, range and default values.

n SM (Sleep Mode)
n SN (Number of Sleep Periods)
n SO (Sleep Options)
n ST (Wake Time)
n SP (Sleep Time)
n WH (Wake Host Delay)

Sleep pins
The following table describes the three external device pins associated with sleep. See the XBee3 RF
Module Hardware Reference Manual for the pinout of your device.

https://www.digi.com/resources/documentation/digidocs/90001543/default.htm
https://www.digi.com/resources/documentation/digidocs/90001543/default.htm

Sleep support Sleep conditions

Digi XBee3® DigiMesh 2.4 RF Module User Guide 101

Pin
name

Pin
number Description

DTR
/SLEEP_
RQ

Micro pin
9/SMT
pin 10

For SM = 1, high puts the device to sleep and low wakes it up. For SM = 5, a
high to low transition wakes the device up for ST time. The device ignores a
low to high transition in SM = 5.

SPI_
SSEL

Micro pin
14/SMT
pin 15

This pin operates the same as SLEEP_RQ when D8 is 0.

CTS Micro pin
24/SMT
pin 25

If D7 = 1, high indicates that the device is asleep and low indicates that it is
awake and ready to receive serial data.

ON_
SLEEP

Micro pin
25/SMT
pin 26

Low indicates that the device is asleep and high indicates that it is awake and
ready to receive serial data.

Sleep conditions
Since instructions stop executing while the device is sleeping, it is important to avoid sleeping when
the device has work to do. For example, the device will not sleep if any of the following are true:

1. The device is operating in Commandmode, or in the process of getting into Commandmode
with the +++ sequence.

2. The device is processing AT commands from API mode
3. The device is processing remote AT commands
4. Something is queued to the serial port and that data is not blocked by RTS flow control

If each of the above conditions are false, then sleepmay still be blocked in these cases:

1. Enough time has not expired since the device has awakened.
a. If the device is operating in pin sleep, the amount of time needed for one character

to be received on the UART is enough time.
b. If the device is operating in asynchronous cyclic sleep, enough time is defined by a

timer. The duration of that timer is:
i. defined by ST if in SM 5 mode and it is awakened by a pin
ii. 30 ms to allow enough time for a poll and a poll response

c. In addition, if the device is operating in Asynchronous Cyclic Sleep, the wake time is
extended by an additional ST time when new OTA data or serial data is received.

2. Sleep Request pin is not asserted when operating in pin sleepmode
3. Data is waiting to be sent OTA.

The sleep timer
If the device receives serial or RF data in Asynchronous cyclic sleepmode and Asynchronous cyclic
sleep with pin wake upmodes (SM = 4 or SM = 5), it starts a sleep timer (time until sleep).

Sleep support Sleep coordinator sleep modes in the network

Digi XBee3® DigiMesh 2.4 RF Module User Guide 102

n If the device receives any data serially or by RF link, the timer resets.
n Use ST (Wake Time) to set the duration of the timer.
n When the sleep timer expires the device returns to sleep.

Sleep coordinator sleep modes in the network
In a synchronized sleeping network, one node acts as the sleep coordinator. During normal
operations, at the beginning of a wake cycle the sleep coordinator sends a sync message as a
broadcast to all nodes in the network. This message contains synchronization information and the
wake and sleep times for the current cycle. All cyclic sleep nodes that receive a sync message remain
awake for the wake time and then sleep for the specified sleep period.
The sleep coordinator sends one sync message at the beginning of each cycle with the current wake
and sleep times. All router nodes that receive this sync message relay the message to the rest of the
network. If the sleep coordinator does not hear a rebroadcast of the sync message by one of its
immediate neighbors, then it re-sends the message one additional time.
If you change the SP or ST parameters, the network does not apply the new settings until the
beginning of the next wake time. For more information, see Change sleep parameters.
A sleeping router network is robust enough that an individual node can go several cycles without
receiving a sync message, due to RF interference, for example. As a node misses sync messages, the
time available for transmitting messages during the wake time reduces to maintain synchronization
accuracy. By default, a device reduces its active sleep time progressively as it misses consecutive sync
messages.

Synchronization messages
A sleep coordinator regularly sends sync messages to keep the network in sync. Unsynchronized
nodes also sendmessages requesting sync information.
Sleep compatible nodes use Deployment mode when they first power up and the sync message has
not been relayed. A sleep coordinator in Deployment mode rapidly sends sync messages until it
receives a relay of one of those messages. Deployment mode:

n Allows you to effectively deploy a network.
n Allows a sleep coordinator that resets to rapidly re-synchronize with the rest of the network.

If a node exits deployment mode and then receives a sync message from a sleep coordinator that is in
Deployment mode, it rejects the sync message and sends a corrective sync to the sleep coordinator.
Use the SO (sleep options) command to disable deployment mode. This option is enabled by default.
A sleep coordinator that is not in deployment mode sends a sync message at the beginning of the
wake cycle. The sleep coordinator listens for a neighboring node to relay the sync. If it does not hear
the relay, the sleep coordinator sends the sync one additional time.
A node that is not a sleep coordinator and has never been synchronized sends a message requesting
sync information at the beginning of its wake cycle. Synchronized nodes which receive one of these
messages respond with a synchronization packet.
If you use the SO command to configure nodes as non-coordinators, and if the non-coordinators go six
or more sleep cycles without hearing a sync, they send a message requesting sync at the beginning of
their wake period.
The following diagram illustrates the synchronization behavior of sleep compatible devices.

Sleep support Synchronization messages

Digi XBee3® DigiMesh 2.4 RF Module User Guide 103

Sleep support Become a sleep coordinator

Digi XBee3® DigiMesh 2.4 RF Module User Guide 104

Become a sleep coordinator
In DigiMesh networks, a device can become a sleep coordinator in one of four ways:

n Define a sleep coordinator
n A potential sleep coordinator misses three or more sync messages
n Press the Commissioning Pushbutton twice on a potential sleep coordinator
n Change the sleep timing values on a potential sleep coordinator

Set the sleep coordinator option
You can specify that a node always act as a sleep coordinator. To do this, set the sleep coordinator bit
(bit 0) in the SO command to 1.
A node with the sleep coordinator bit set always sends a sync message at the beginning of a wake
cycle. To avoid network congestion and synchronization conflicts, do not set this bit on more than one
node in the network.
A node that is centrally located in the network can serve as a good sleep coordinator, because it
minimizes the number of hops a sync message takes to get across the network.
A sleep support node and/or a node that is mains powered is a good candidate to be a sleep
coordinator.

CAUTION! Use the sleep coordinator bit with caution. The advantages of using the option
become weaknesses if you use it on a node that is not in the proper position or configuration.
Also, it is not valid to have the sleep coordinator option bit set on more than one node at a
time.

You can also use the sleep coordinator option when you set up a network for the first time. When you
start a network, you can configure a node as a sleep coordinator so it will begin sending sleep
messages. After you set up the network, we recommend that you disable the sleep coordinator bit.

Resolution criteria and selection option
There is an automatic selection process with resolution criteria that occurs on a node if it loses
contact with the network sleep coordinator.
A sleep compatible node may become a sleep coordinator if it:

n Misses three or more sync messages and it:
n Is not configured as a non-coordinator by setting bit 1 of SO.

If such a node wins out on the selection process, it becomes the new network sleep coordinator.
It is possible for multiple nodes to declare themselves as the sleep coordinator. If this occurs, the
firmware uses the following resolution criteria to identify the sleep coordinator from among the nodes
using the selection process:

1. Newer sleep parameters: the network considers a node using newer sleep parameters (SP and
ST) as higher priority than a node using older sleep parameters. See Commissioning
Pushbutton option. Note that when SP and/or ST is changed, it increments the sequence
number such that it sends the newest sync message and it has priority to become the sleep
coordinator.

Sleep support Become a sleep coordinator

Digi XBee3® DigiMesh 2.4 RF Module User Guide 105

2. Sleep coordinator: a node configured as the sleep coordinator is higher priority than other
nodes.

3. Sleep support node: sleep support nodes are higher priority than cyclic sleep nodes. You can
modify this behavior using the SO parameter.

4. Serial number: If the previous factors do not resolve the priority, the network considers the
node with the higher serial number to be higher priority.

Commissioning Pushbutton option
Use the Commissioning Pushbutton to select a device to act as the sleep coordinator. The
Commissioning Pushbutton is mapped to DIO0 (pin 33) and enabled by default.
Use the Commissioning Pushbutton to select a device to act as the sleep coordinator.
If you enable the Commissioning Pushbutton functionality, you can immediately select a device as a
sleep coordinator by pressing the Commissioning Pushbutton twice or by issuing the CB2 command.
The device you select in this manner is still subject to the resolution criteria process.
Only sleep coordinator nodes honor Commissioning Pushbutton nomination requests. A node
configured as a non-sleep coordinator ignores commissioning button nomination requests.

Overriding syncs
Any sleep compatible node in the network that does not have the non-coordinator sleep option set
can send an overriding sync and become the network sleep coordinator. An overriding sync effectively
changes the synchronization of all nodes in the network to the ST and SP values of the node sending
the overriding sync. It also selects the node sending the overriding sync as the network sleep
coordinator. While this is a powerful operation, it may be an undesired side effect because the current
sleep coordinator may have been carefully selected and it is not desired to change it. Additionally the
current wake and sleep cycles may be desired rather than the parameters on the node sending the
overriding sync. For this reason, it is important to know what kicks off an overriding sync.
An overriding sync occurs whenever ST or SP is changed to a value different thanOW or OS
respectively. For example no overriding sync will occur if SP is changed from 190 to C8 if the network
was already operating with OS at C8. On the other hand, if SP is changed from 190 to 190 (meaning no
change), andOS is C8, than an overriding sync will occur because the network parameters are being
changed.
Even parameters that seem unrelated to sleep can kick off an overriding sync. These are NH, NN, RN,
andMT. When any of these parameters are changed, they can affect network traversal time. If such
changes cause the configured value of ST to be smaller than the value needed for network traversal,
then ST is increased and if that increased value is different thanOW, then an overriding sync will
occur.
For most applications, we recommend configuring the NH, NN, RN, andMT network parameters
during initial deployment only. The default values of NH andNN are optimized to work for most
deployments. Additionally, it would be best to set ST and SP the same on all nodes in the network
while keeping ST sufficiently large so that it won’t be affected by an inadvertent change of NH, NN,
RN, or MT.

Sleep guard times
To compensate for variations in the timekeeping hardware of the various devices in a sleeping router
network, the network allocates sleep guard times at the beginning and end of the wake period. The
size of the sleep guard time varies based on the sleep and wake times you select and the number of
sleep cycles that elapse since receiving the last sync message. The sleep guard time guarantees that

Sleep support Select sleep parameters

Digi XBee3® DigiMesh 2.4 RF Module User Guide 106

a destination module will be awake when the source device sends a transmission. As a node misses
more andmore consecutive sync messages, the sleep guard time increases in duration and decreases
the available transmission time.

Auto-early wake-up sleep option
If you have nodes that are missing sync messages and could be going out of sync with the rest of the
network, enabling an early wake gives the device a better chance to hear the sync messages that are
being broadcast.
Similar to the sleep guard time, the auto early wake-up option decreases the sleep period based on
the number of sync messages a node misses. This option comes at the expense of battery life.
Use bit 3 of the SO command to disable auto-early wake-up sleep. This option is enabled by default.

Select sleep parameters
Choosing proper sleep parameters is vital to creating a robust sleep-enabled network with a desirable
battery life. To select sleep parameters that will be good for most applications, follow these steps:

1. Choose NN andNH.
Based on the placement of the nodes in your network, select the appropriate values for
the NH (Network Hops) andNN (Network Delay Slots) parameters.
We optimize the default values of NH andNN to work for the majority of deployments.
In most cases, we suggest that you do not modify these parameters from their default
values. Decreasing these parameters for small networks can improve battery life, but
take care to not make the values too small.

2. Calculate the Sync Message Propagation Time (SMPT).
This is the maximum amount of time it takes for a sleep synchronization message to
propagate to every node in the network. You can estimate this number with the
following formula:
SMPT = NH * (MT + 1) * 4 ms.

Note The 4 msec constant applies to XBee3 DigiMesh, but it is different for every platform on
which DigiMesh runs.

3. Select the duty cycle you want.
The ratio of sleep time to wake time is the factor that has the greatest effect on the device’s
power consumption. Battery life can be estimated based on the following factors:

n sleep period
n wake time
n sleep current
n RX current
n TX current
n battery capacity

4. Choose the sleep period and wake time.

The wake time must be long enough to transmit the desired data as well as the sync message.
The ST parameter automatically adjusts upwards to its minimum value when you change other
AT commands that affect it (SP, NN, andNH).

Sleep support Start a sleeping synchronous network

Digi XBee3® DigiMesh 2.4 RF Module User Guide 107

Use a value larger than this minimum. If a device misses successive sync messages, it reduces
its available transmit time to compensate for possible clock drift. Budget a large enough ST
time to allow for the device to miss a few sync messages and still have time for normal data
transmissions.

Start a sleeping synchronous network
By default, all new nodes operate in normal (non-sleep) mode. To start a synchronous sleeping
network, follow these steps:

1. Set SO to 1 to enable the sleep coordinator option on one of the nodes.
2. Set its SM to a synchronous sleep compatible mode (7 or 8) with its SP and ST set to a quick

cycle time. The purpose of a quick cycle time is to allow the network to send commands quickly
through the network during commissioning.

3. Power on the new nodes within range of the sleep coordinator. The nodes quickly receive a
sync message and synchronize themselves to the short cycle SP and ST set on the sleep
coordinator.

4. Configure the new nodes to the sleepmode you want, either cyclic sleeping modes or sleep
support modes.

5. Set the SP and ST values on the sleep coordinator to the values you want for the network.
6. In order to reduce the possibility of an unintended overriding sync, set SP and ST to the

intended sleep/wake cycle on all nodes in the network. Be sure that ST is large enough to
prevent it from being inadvertently increased by changing NN, NH, or MT.

7. Wait a sleep cycle for the sleeping nodes to sync themselves to the new SP and ST values.
8. Disable the sleep coordinator option bit on the sleep coordinator unless you want to force a

particular sleep coordinator.
9. Deploy the nodes to their positions.

Alternatively, prior to deploying the network you can use the WR command to set up nodes with their
sleep settings pre-configured and written to flash. If this is the case, you can use the Commissioning
Pushbutton and associate LED to aid in deployment:

1. If you are going to use a sleep coordinator in the network, deploy it first.
2. If more than one node can be the sleep coordinator, select a node for deployment, power it on

and press the Commissioning Pushbutton twice. This causes the node to begin emitting sync
messages.

3. Verify that the first node is emitting sync messages by watching its associate LED. A slow blink
indicates that the node is acting as a sleep coordinator.

4. Power on nodes in range of the sleep coordinator or other nodes that have synchronized with
the network. If the synchronized node is asleep, you can wake it by pressing the
Commissioning Pushbutton once.

5. Wait a sleep cycle for the new node to sync itself.
6. Verify that the node syncs with the network. The associate LED blinks when the device is

awake and synchronized.
7. Continue this process until you deploy all of the nodes.

Sleep support Add a new node to an existing network

Digi XBee3® DigiMesh 2.4 RF Module User Guide 108

Add a new node to an existing network
To add a new node to the network, the node must receive a sync message from a node already in the
network. On power-up, an unsynchronized, sleep compatible node periodically sends a broadcast
requesting a sync message and then sleeps for its SP period. Any node in the network that receives
this message responds with a sync. Because the network can be asleep for extended periods of time,
and cannot respond to requests for sync messages, there are methods you can use to sync a new
node while the network is asleep.

1. Power the new node on within range of a sleep support node. Sleep support nodes are always
awake and able to respond to sync requests promptly.

2. You can wake a sleeping cyclic sleep node in the network using the Commissioning Pushbutton.
Place the new node in range of the existing cyclic sleep node. Wake the existing node by
pressing the Commissioning Pushbutton once. The existing node stays awake for 30 seconds
and responds to sync requests while it is awake.

If you do not use one of these two methods, you must wait for the network to wake up before adding
the new node.
Place the new node in range of the network with a sleep/wake cycle that is shorter than the wake
period of the network.
The new node periodically sends sync requests until the network wakes up and it receives a sync
message.

Change sleep parameters
To change the sleep and wake cycle of the network, select any sleep coordinator capable node in the
network and change the SP and/or ST of the node to values different than those the network
currently uses.

n If you configure a particular sleep coordinator or if you know which node acts as the sleep
coordinator, we suggest that you use this node to make changes to network settings.

n If you do not know the network sleep coordinator, you can use any node that does not have the
non-sleep coordinator sleep option bit set. For details on the bit, see SO (Sleep Options).

When you make changes to a node's SP and/or ST parameters and that node does not have the non-
sleep coordinator option set then:

n That node broadcasts an overriding sync to the network to advertise the new sleep cycle.
n That node nominates itself to become the sleep coordinator.
n That node will remain the sleep coordinator unless another node in the network designates

itself as the sleep coordinator.
n The network will apply the new sleep parameters at the beginning of the next wake cycle.

Changing sleep parameters increases the chances that nodes will lose sync. If a node does not receive
the sync message with the new sleep settings, it continues to operate on its old settings. To minimize
the risk of a node losing sync and to facilitate the re-syncing of a node that does lose sync, take the
following precautions:

Sleep support Rejoin nodes that lose sync

Digi XBee3® DigiMesh 2.4 RF Module User Guide 109

1. Whenever possible, avoid changing sleep parameters.
2. Enable the missed sync early wake up sleep option in the SO command. This option is enabled

by default. This command tells a node to wake up progressively earlier based on the number of
cycles it goes without receiving a sync. This increases the probability that the un-synced node
will be awake when the network wakes up and sends the sync message.

Note Using this sleep option increases reliability but may decrease battery life. Nodes using this sleep
option that miss sync messages increase their wake time and decrease their sleep time during cycles
where they miss the sync message. This increases power consumption.

When you are changing between two sets of sleep settings, choose settings so that the wake periods
of the two sleep settings occur at the same time. In other words, try to satisfy the following equation:

(SP1 + ST1) = N * (SP2 + ST2)

where SP1/ST1 and SP2/ST2 are the desired sleep settings and N is an integer.

Rejoin nodes that lose sync
DigiMesh networks get their robustness from routing redundancies which may be available. We
recommend architecting the network with redundant mesh nodes to increase robustness.
If a scenario exists where the only route connecting a subnet to the rest of the network depends on a
single node, and that node fails or the wireless link fails due to changing environmental conditions (a
catastrophic failure condition), then multiple subnets may arise using the same wake and sleep
intervals. When this occurs the first task is to repair, replace, and strengthen the weak link with new
and/or redundant devices to fix the problem and prevent it from occurring in the future.
If a network has multiple subnets that drift out of phase with each other, get the subnets back in
phase with the following steps:

1. Place a sleep support node in range of both subnets.
2. Select a node in the subnet that you want the other subnet to sync with.
3. Use this node to slightly change the sleep cycle settings of the network, for example,

increment ST.
4. Wait for the subnet’s next wake cycle. During this cycle, the node you select to change the

sleep cycle parameters sends the new settings to the entire subnet it is in range of, including
the sleep support node that is in range of the other subnet.

5. Wait for the out of sync subnet to wake up and send a sync. When the sleep support node
receives this sync, it rejects it and sends a sync to the subnet with the new sleep settings.

6. The subnets will now be in sync. You can remove the sleep support node.
7. You can also change the sleep cycle settings back to the previous settings.

If you only need to replace a few nodes, you can use this method:

1. Reset the out of sync node and set its sleepmode to Synchronous Cyclic Sleepmode (SM = 8).
2. Set up a short sleep cycle.
3. Place the node in range of a sleep support node or wake a sleeping node with the

Commissioning Pushbutton.
4. The out of sync node receives a sync from the node that is synchronized to the network. It then

syncs to the network sleep settings.

Sleep support Diagnostics

Digi XBee3® DigiMesh 2.4 RF Module User Guide 110

Diagnostics
The following diagnostics are useful in applications that manage a sleeping router network:

Query sleep cycle
Use the OS andOW commands to query the current operational sleep and wake times that a device
uses.

Sleep status
Use the SS command to query useful information regarding the sleep status of the device. Use this
command to query if the node is currently acting as a network sleep coordinator.

Missed sync messages command
Use the MS command to query the number of cycles that elapsed since the device received a sync
message.

Sleep status API messages
When you use the SO command to enable this option, a device that is in API operating mode outputs
modem status frames immediately after it wakes up and prior to going to sleep.

AT commands

Networking commands 112
DigiMesh Addressing commands 118
DigiMesh configuration commands 120
Diagnostic commands - addressing timeouts 122
Security commands 123
RF interfacing commands 124
MAC diagnostics commands 125
Sleep settings commands 127
Diagnostic - sleep status/timing commands 130
UART interface commands 131
Commandmode options 134
MicroPython commands 136
File system commands 137
UART pin configuration commands 139
SPI interface commands 141
I/O settings commands 143
I/O sampling commands 152
I/O line passing commands 155
Diagnostics – Firmware/Hardware Information 158
Memory access commands 161
Custom default commands 162

Digi XBee3® DigiMesh 2.4 RF Module User Guide 111

AT commands Networking commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 112

Networking commands
The following commands affect the DigiMesh network.

CH (Operating Channel)
Set or read the operating channel devices used to transmit and receive data.
In order for devices to communicate with each other, they must share the same channel number. A
network can use different channels to prevent devices in one network from listening to the
transmissions of another and to reduce interference.
The command uses IEEE 802.15.4 channel numbers.

Parameter range
0xB - 0x1A

Default
0xC (channel 12)

ID (Network ID)
Set or read the user network identifier.
Devices must have the same network identifier to communicate with each other.

Parameter range
0 - 0xFFFF

Default
0x7FFF

CE (Routing / Messaging Mode)
The routing mode of the XBee3 DigiMesh RF Module.
A routing device forwards broadcasts and route discoveries for unicasts. A non-routing device does
neither.

Indirect Messaging Coordinator
Device will not transmit point to multi-point unicasts until an end device requests them. Indirect
messaging is only applicable for point-to-multipoint messages (TO (Transmit Options) = 0x40).

Indirect Messaging Poller
Device will periodically poll a coordinator for messages.

Parameter range
0 - 6

Parameter Description Routes packets

0 Standard router Yes

AT commands Networking commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 113

Parameter Description Routes packets

1 Indirect message coordinator Yes

2 Non-routing device No

3 Non-routing coordinator No

4 Indirect message poller Yes

5 N/A N/A

6 Non-routing poller No

Default
0

C8 (Compatibility Options)
Sets or displays the operational compatibility with a legacy DigiMesh 2.4 device (S1 or S2C hardware).
This parameter should only be set when operating in a mixed network that contains XBee Series 1 or
XBee S2C devices.

Parameter range
0, 4
Bit field:

Bit Meaning Setting Description

2 TX
compatibility

0 When encryption is enabled, AES Counter mode is used with a 256-bit
key.

1 When encryption is enabled AES ECB mode is used with a 128-bit key.
This is compatible with legacy versions of DigiMesh 2.4.

3 Use XBee S1
compatible
synchronous
sleep
messages

0 Use native XBee3 synchronous sleepmessages. This mode involves
the least processing to keep the nodes synchronized.

1 Convert synchronous sleepmessages to be compatible with XBee S1.
This mode must be used on all the nodes in the network if there are
any XBee S1 nodes in the network. This mode may always be used,
even if there are no S1 nodes in the network. But doing so reduces
performance and accuracy and is not recommended unless XBee S1
nodes exist in the same network.

Default
0

NI (Network Identifier)
Stores the node identifier string for a device, which is a user-defined name or description of the
device. This can be up to 20 ASCII characters.

AT commands Networking commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 114

XCTU prevents you from exceeding the string limit of 20 characters for this command. If you are using
another software application to send the string, you can enter longer strings, but the software on the
device returns an error.
Use the ND (Network Discovery) command with this string as an argument to easily identify devices
on the network.
The DN command also uses this identifier.

Parameter range
A string of case-sensitive ASCII printable characters from 1 to 20 bytes in length. A carriage return
or a comma automatically ends the command.

Default
0x20 (an ASCII space character)

AT commands Networking commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 115

ND (Network Discover)
Discovers and reports all of the devices it finds on a network. If you sendND through a local or remote
API frame, each network node returns a separate AT Command Response (0x88) or Remote
Command Response (0x97) frame, respectively.
The command reports the following information after a jittered time delay.

SH<CR> (4 bytes)
SL<CR> (4 bytes)
DB<CR> (Contains the detected signal strength of the response in negative dBm units)
NI <CR> (variable, 0-20 bytes plus 0x00 character)
DEVICE_TYPE<CR> (1 byte: 0 = Coordinator, 1 = Router, 2 = End Device)
STATUS<CR> (1 byte: reserved)
PROFILE_ID<CR> (2 bytes)
MANUFACTURER_ID<CR> (2 bytes)
DIGI DEVICE TYPE<CR> (4 bytes. Optionally included based on NO settings.)
RSSI OF LAST HOP<CR> (1 byte. Optionally included based on NO settings.)

If you send the FN command in Commandmode, after (NT*100) ms + overhead time, the command
ends by returning a carriage return, represented by <CR>.
The ND command accepts an NI (Node Identifier) as an argument. For more details, see Directed node
discovery.
Broadcast an ND command to the network. If the command includes an optional node identifier string
parameter, only those devices with a matching NI string respond without a random offset delay. If the
command does not include a node identifier string parameter, all devices respond with a random
offset delay.
The NT setting determines the range of the random offset delay. The NO setting sets options for the
Node Discovery.
For more information about options that affect the behavior of the ND command Refer to NO
(Network Discovery Options) for options which affect the behavior of the ND command.

WARNING! If the NT setting is small relative to the number of devices on the network,
responses may be lost due to channel congestion. Regardless of the NT setting, because
the random offset only mitigates transmission collisions, getting responses from all devices
in the network is not guaranteed.

Parameter range
20-byte printable ASCII string

Default
N/A

DN (Discover Node)
Resolves an NI (Node identifier) string to a physical address (case sensitive).
The following events occur after DN discovers the destination node:
When DN is sent in Commandmode:

AT commands Networking commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 116

1. The requesting node sets DL and DH to the address of the device with the matching NI string.
2. The requesting node returns OK (or ERROR).
3. If the requesting node returns OK (node found), it exits Commandmode immediately with

DH/DL set to the node that is found so that the next serial input is sent to the node designated
by the DN parameter.

4. If the requesting node returns ERROR, (node not found), it remains in Commandmode,
allowing you to enter further commands.

When DN is sent as a local AT Command Frame - 0x08:

1. The requesting node returns 0xFFFE followed by its 64-bit extended addresses in an AT
Command Response frame - 0x88.

2. If there is no response from a module within (N?* 100) milliseconds or you do not specify a
parameter (by leaving it blank), the requesting node returns an ERROR message.

Parameter range
20-byte ASCII string

Default
N/A

FN (Find Neighbors)
Discovers and reports all devices found within immediate (1 hop) RF range. FN reports the following
information for each device it discovers:

MY<CR> (always 0xFFFE)
SH<CR>
SL<CR>
NI<CR> (Variable length)
PARENT_NETWORK ADDRESS<CR> (2 Bytes) (always 0xFFFE)
DEVICE_TYPE<CR> (1 Byte: 0 = Coordinator, 1 = Router, 2 = End Device)
STATUS<CR> (1 Byte: Reserved)
PROFILE_ID<CR> (2 Bytes)
MANUFACTURER_ID<CR> (2 Bytes)
DIGI DEVICE TYPE<CR> (4 Bytes. Optionally included based on NO settings.)
RSSI OF LAST HOP<CR> (1 Byte. Optionally included based on NO settings.)
<CR>

If you send the FN command in Commandmode, after (NT*100) ms + overhead time, the command
ends by returning a carriage return, represented by <CR>.
If you send the FN command through a local AT Command (0x08) or remote AT command (0x17) API
frame, each response returns as a separate AT Command Response (0x88) or Remote Command
Response (0x97) frame, respectively. The data consists of the bytes in the previous list without the
carriage return delimiters. The NI string ends in a 0x00 null character.
FN accepts a NI (Node Identifier) as an argument.
See Find specific neighbor for more details.

AT commands Networking commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 117

Parameter range
0 to 20 ASCII characters

Default
N/A

NT (Network Discovery Back-off)
The ND and FN commands use NT. The read-only N? command increases and decreases with NT.

Parameter range
0x20 - 0x2EE0 (x 100 ms)

Default
0x82 (13 seconds)

NO (Network Discovery Options)
Set or read the network discovery options value for ND (Network Discover) on a particular device. The
options bit field value changes the behavior of the ND command and what optional values the local
device returns when it receives an ND command or API Node Identification Indicator (0x95) frame.
Use NO to suppress or include a self-response to ND (Node Discover) commands. When NO bit 1 = 1, a
device performing a Node Discover includes a response entry for itself.

Parameter range
0x0 - 0x7 (bit field)

Option Description

0x01 Append the DD (Digi Device Identifier) value to ND responses or API node identification
frames.

0x02 Local device sends ND response frame out the serial interface when ND is issued.

0x04 Append the RSSI of the last hop to ND, FN, and responses or API node identification
frames.

Default
0x0

NP (Maximum Packet Payload Bytes)
Reads the maximum number of RF payload bytes that you can send in a transmission.
The XBee3 DigiMesh RF Module firmware returns a fixed number of bytes: 0x49 = 73 bytes without
encryption, 65 bytes with encryption.

Note NP returns a hexadecimal value. For example, if NP returns 0x41, this is equivalent to 65 bytes.

Parameter range
[read-only]

AT commands DigiMesh Addressing commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 118

Default
N/A

DigiMesh Addressing commands
The following commands affect the source and destination addressing for the device.

SH (Serial Number High)
Displays the upper 32 bits of the unique IEEE 64-bit address assigned to the XBee in the factory.
The 64-bit source address is always enabled. This value is read-only and it never changes.

Parameter range
0 - 0xFFFFFFFF [read-only]

Default
Set in the factory

SL (Serial Number Low)
Displays the lower 32 bits of the unique IEEE 64-bit RF address assigned to the XBee in the factory.
The 64-bit source address is always enabled. This value is read-only and it never changes.

Parameter range
0 - 0xFFFFFFFF [read-only]

Default
Set in the factory

DH (Destination Address High)
Set or read the upper 32 bits of the 64-bit destination address. When you combine DH with DL, it
defines the destination address that the device uses for transmissions in Transparent mode.
This destination address is also used for outgoing I/O samples in both Transparent and API modes.
0x000000000000FFFF is the broadcast address. It is also used as the polling address when the device
functions as end device.

Parameter range
0 - 0xFFFFFFFF

Default
0

DL (Destination Address Low)
Set or display the lower 32 bits of the 64-bit destination address. When you combine DH with DL, it
defines the destination address that the device uses for transmissions in Transparent mode. This
destination address is also used for outgoing I/O samples in both Transparent and API modes.
0x000000000000FFFF is the broadcast address. It is also used as the polling address when the device
functions as end device.

AT commands DigiMesh Addressing commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 119

Parameter range
0 - 0xFFFFFFFF

Default
0xFFFF (broadcast)

RR (Unicast Mac Retries)
Set or read the maximum number of MAC level packet delivery attempts for unicasts. If RR is non-
zero, the sent unicast packets request an acknowledgment from the recipient. Unicast packets can
be retransmitted up to RR times if the transmitting device does not receive a successful
acknowledgment.

Parameter range
0 - 0xF

Default
0xA (10 retries)

MT (Broadcast Multi-Transmits)
Set or read the number of additional MAC-level broadcast transmissions. All broadcast packets are
transmittedMT+1 times to increase chances that they are received.

Parameter range
0 - 0xF

Default
3

TO (Transmit Options)
The device's transmit options. The device uses these options for all transmissions. API transmissions
can override this using the TxOptions field in the API frame.

Parameter range
0x40-0xDF

Bit field:

Bit Meaning Description

0 Disable ACK Disable acknowledgments on all unicasts

1 Disable RD Disable Route Discovery on all DigiMesh unicasts

2 NACK Enable a NACK messages on all DigiMesh API packets

3 Trace Route Enable a Trace Route on all DigiMesh API packets

4 Reserved <set this bit to 0>

AT commands DigiMesh configuration commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 120

Bit Meaning Description

5 Reserved <set this bit to 0>

6,7 Delivery method b’00 = <invalid option>
b’01 = Point-multipoint (0x40)
b'10 = Directed Broadcast (0x80)
b’11 = DigiMesh (0xC0)

Default
0xC0

CI (Cluster ID)
The application layer cluster ID value. The device uses this value as the cluster ID for all data
transmissions in Transparent mode and for all transmissions performed with the Transmit Request
frame - 0x10 in API mode. In API mode, transmissions performed with the Explicit Addressing
Command frame - 0x11 ignore this parameter.
If you set this value to 0x12 (loopback Cluster ID), the destination node echoes any transmitted
packet back to the source device.

Parameter range
0 - 0xFFFF

Default
0x11 (Transparent data cluster ID)

DigiMesh configuration commands
The following commands affect outgoing transmissions in a DigiMesh network.

MR (Mesh Unicast Retries)
Set or read the maximum number of network packet delivery attempts. If MR is non-zero, the packets
a device sends request a network acknowledgment, and can be resent up toMR+1 times if the device
does not receive an acknowledgment.
Changing this value dramatically changes how long a route request takes.
We recommend that you set this value to 1.
If you set this parameter to 0, it disables network ACKs. Initially, the device can find routes, but a
route will never be repaired if it fails.

Parameter range
0 - 7 mesh unicast retries

Default
1

BH (Broadcast Hops)
The maximum transmission hops for broadcast data transmissions.

AT commands DigiMesh configuration commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 121

If you set BH greater than NH (Network Hops), the device uses the value of NH.
If you set BH to 0, the device uses NH as a limit to the maximum number of hops.
When working in API mode, the Broadcast Radius field in the API frame is used instead of this
configuration.

Parameter range
0 - 0x20

Default
0

NH (Network Hops)
Sets or displays the maximum number of hops across the network. This parameter limits the number
of hops for both unicasts and broadcasts. For example a RREQ is discarded after NH hops occur,
preventing the route to a node more than NH hops away from being created. Without a route,
unicasts will not work to that node. You can use this parameter to calculate the maximum network
traversal time.
You must set this parameter to the same value on all nodes in the network.
If BH (Broadcast Hops) = 0, NH is used to set the maximum number of hops across the network when
sending a broadcast transmission. NH is also used to set the maximum number of hops for broadcast
if BH > NH.

Parameter range
1 - 0x20 (1 - 32 hops)

Default
7

NN (Network Delay Slots)
Set or read the maximum random number of network delay slots before rebroadcasting a network
packet.
One network delay slot is approximately 13 ms.

Parameter range
1 - 0xA network delay slots

Default
3

DM (DigiMesh Options)
A bit field mask that you can use to enable or disable DigiMesh features. We highly recommend that
you set the same DM value on every node on the network, otherwise you may encounter unexpected
behavior when attempting to use the DigiMesh diagnostic features.
Bit:
0: Disable aggregator updates. When set to 1, the device does not issue or respond to AG requests.
1: Disable Trace Route and NACK responses. When set to 1, the device does not generate or respond
to Trace Route or NACK requests.

AT commands Diagnostic commands - addressing timeouts

Digi XBee3® DigiMesh 2.4 RF Module User Guide 122

Parameter range
0 - 0x03 (bit field)

Default
0

AG (Aggregator Support)
The AG command sends a broadcast through the network that has the following effects on nodes that
receive the broadcast:

n The receiving node establishes a DigiMesh route back to the originating node, if there is space
in the routing table.

n The DH and DL of the receiving node update to the address of the originating node if the AG
parameter matches the current DH/DL of the receiving node.

n API-enabled devices with updated DH and DL send an Aggregate Addressing Update frame
(0x8E) out the serial port.

Parameter range
Any 64-bit address

Default
N/A

Diagnostic commands - addressing timeouts
The following AT commands provide the transmission and discovery timeout values.

%H (MAC Unicast One Hop Time)
The MAC unicast one hop time timeout in milliseconds. If you change the MAC parameters it can
change this value.
The time to send a unicast between two nodes in the network should not exceed the product of the
unicast one hop time (%H) and the number of hops between those two nodes.

Parameter range
[read-only]

Default
N/A

%P (Invoke Bootloader)
Forces the device to reset into the bootloader menu.
This command can only be issued locally.

Parameter range
N/A

AT commands Security commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 123

Default
N/A

%8 (MAC Broadcast One Hop Time)
The MAC broadcast one hop time timeout in milliseconds. If you change MAC parameters, it can
change this value.
The time to send a broadcast between two nodes in the network should not exceed the product of the
broadcast one hop time (%8) and the number of hops between those two nodes.

Parameter range
[read-only]

Default
N/A

N? (Network Discovery Timeout)
The maximum response time, in milliseconds, for ND (Network Discovery) responses and DN (Discover
Node) responses. The timeout is the sum of NT (Network Discovery Back-off Time) and the network
propagation time.

Parameter range
This is a read-only parameter, however, its value increases or decreases as NT increases or
decreases and you can modify NT.

Default
N/A

Security commands
The following commands enable and control the encryption used for RF transmissions.

EE (Encryption Enable)
Enables or disables Advanced Encryption Standard (AES) encryption. See bit 2 of C8 (Compatibility
Options), which controls the encryption mode.
Set this command parameter the same on all devices in a network.

Parameter range
0 - 1

Parameter Description

0 Encryption Disabled

1 Encryption Enabled

Default
0

AT commands RF interfacing commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 124

KY (AES Encryption Key)
The Link Key used for encryption and decryption. If C8 (Compatibility Options) bit 2 is cleared,
encryption/decryption uses the 256 bits of the KY value (all 64 ASCII characters of the KY value). C8 bit
2 sets encryption/decryption, and uses the last 32 ASCII characters of the 256-bit KY value entered.
This command is write-only and cannot be read. If you attempt to read KY, the device returns anOK
status.
Set this command parameter the same on all devices in a network.

Parameter range
256-bit value (up to 32 hex bytes/64 ASCII bytes)

Default
0

RF interfacing commands
The following AT commands affect the RF interface of the device.

PL (TX Power Level)
Sets or displays the power level at which the device transmits conducted power.

Note If operating on channel 26 (CH = 0x1A), output power will be capped and cannot exceed 8 dBm
regardless of the PL setting.

Parameter range
0 - 4

PL setting XBee3 TX power XBee3-PRO TX power

4 8 dBm 19 dBm

3 5 dBm 15 dBm

2 2 dBm 8 dBm

1 -1 dBm 3 dBm

0 -5 dBm -5 dBm

Default
4

PP (Output Power in dBm)
Display the operating output power based on the current configuration (channel and PL setting). The
values returned are in dBm, with negative values represented in two's complement; for example:
-5 dBm = 0xFB.

Parameter range
0 - 0xFF [read-only]

AT commands MAC diagnostics commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 125

Default
N/A

CA (CCA Threshold)
Defines the Clear Channel Assessment (CCA) threshold. Prior to transmitting a packet, the device
performs a CCA to detect energy on the channel. If the device detects energy above the CCA
threshold, it will not transmit the packet.
The CA parameter is measured in units of -dBm.

Parameter range
0 (disabled), 0x28 - 0x64 (-dBm)

Default
0x0 (CCA disabled)

DB (Last Packet RSSI)
Reports the RSSI in -dBm of the last received RF data packet. DB returns a hexadecimal value for the
-dBmmeasurement.
For example, if DB returns 0x60, then the RSSI of the last packet received was -96 dBm.
DB only indicates the signal strength of the last hop. It does not provide an accurate quality
measurement for a multihop link.
If the XBee3 DigiMesh RF Module has been reset and has not yet received a packet, DB reports 0.
This value is volatile (the value does not persist in the device's memory after a power-up sequence).

Parameter range
0 - 0xFF [read-only]

Default
0

MAC diagnostics commands
The following commands provide Media Access Control diagnostic information.

EA (MAC ACK Failure Count)
The number of unicast transmissions that time out awaiting a MAC ACK. This can be up to RR +1
timeouts per unicast when RR > 0.
This count increments whenever a MAC ACK timeout occurs on a MAC-level unicast. When the number
reaches 0xFFFF, the firmware does not count further events.
To reset the counter to any 16-bit unsigned value, append a hexadecimal parameter to the command.
This value is volatile (the value does not persist in the device's memory after a power-up sequence).

Parameter range
0 - 0xFFFF

AT commands MAC diagnostics commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 126

Default
0x0

EC (CCA Failures)
Sets or displays the number of frames that were blocked and not sent due to CCA failures or
receptions in progress. If CCA is disabled (CA is 0), then this count only increments for frames that are
blocked due to receive in progress. When this count reaches its maximum value of 0xFFFF, it stops
counting.
You can reset EC to 0 (or any other value) at any time to make it easier to track errors. This value is
volatile (the value does not persist in the device's memory after a power-up sequence).

Parameter range
0 - 0xFFFF

Default
0x0

BC (Bytes Transmitted)
The number of RF bytes transmitted. The firmware counts every byte of every packet, including
MAC/PHY headers and trailers.
You can reset the counter to any 32-bit value by appending a hexadecimal parameter to the
command. This value is volatile (the value does not persist in the device's memory after a power-up
sequence).

Parameter range
0 - 0xFFFFFFFF

Default
N/A (0 after reset)

GD (Good Packets Received)
This count increments when a device receives a good frame with a valid MAC header on the RF
interface. Received MAC ACK packets do not increment this counter. Once the number reaches
0xFFFF, it does not count further events.
To reset the counter to any 16-bit unsigned value, append a hexadecimal parameter to the command.
This value is volatile (the value does not persist in the device's memory after a power-up sequence).

Parameter range
0 - 0xFFFF

Default
N/A (0 after reset)

TR (Transmission Failure Count)
This count increments whenever a MAC transmission attempt exhausts all MAC retries without ever
receiving a MAC acknowledgment message from the destination node. Once the number reaches

AT commands Sleep settings commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 127

0xFFFF, it does not count further events.
To reset the counter to any 16-bit value, append a hexadecimal parameter to the command.
This value is volatile (the value does not persist in the device's memory after a power-up sequence).

Parameter range
0 - 0xFFFF

Default
N/A (0 after reset)

UA (Unicasts Attempted Count)
The number of unicast transmissions expecting an acknowledgment (when RR > 0).
To reset the counter to any 16-bit value, append a hexadecimal parameter to the command.
UA is a volatile value—that is, the value does not persist across device resets.

Parameter range
0 - 0xFFFF

Default
0

ED (Energy Detect)
Starts an energy detect scan. This command accepts an argument to specify the time in milliseconds
to scan all channels. The device loops through all the available channels until the time elapses. It
returns the maximal energy on each channel, a comma follows each value, and the list ends with a
carriage return. The values returned reflect the energy level that ED detects in -dBm units.

Parameter range
0 - 0x80

Default
0xA (10 ms)

Sleep settings commands
The following commands enable and configure the low power sleepmodes of the device.

SM (Sleep Mode)
Sets or displays the sleepmode of the device.
Normal mode is always awake. Pin sleepmodes allow you to wake the device with the SLEEP_
REQUEST line. Asynchronous cyclic mode sleeps for SP time and briefly wakes, checking for activity.
Sleep support mode is always awake, but can effectively communicate with synchronized cyclic sleep
nodes. Synchronized Cyclic Sleep nodes keep the same wake and sleep cycles for all nodes in the
network.

Parameter range
0 - 5

AT commands Sleep settings commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 128

Parameter Description

0 No sleep (always awake)

1 Pin sleep

2 Unused

3 Unused

4 Asynchronous cyclic sleep

5 Asynchronous cyclic sleep with pin wakeup

6 MicroPython sleep (with optional pin wake). For complete details see the Digi
MicroPython Programming Guide.

7 Synchronous sleep support mode

8 Synchronous cyclic sleep

Default
0

SP (Sleep Time)
Sets or displays the device's sleep time. This command defines the amount of time the device sleeps
per cycle.
For a node operating as an Indirect Messaging Coordinator, this command defines the amount of time
that it will hold an indirect message for an end device. The coordinator will hold the message for (2.5 *
SP).

Parameter range
0x1 - 0x15F900 (x 10 ms) (4 hours)

Default
0xC8

ST (Wake Time)
Sets or displays the wake time of the device.
For devices in asynchronous cyclic sleep, ST defines the amount of time that a device stays awake
after it receives RF or serial data.
For devices in synchronous sleep, the minimum wake time is a function of MT, RN, NH, andNN. If you
increase these values such that ST is no longer big enough to get a message through the network
during a wake cycle, then STwill be increased appropriately.

Parameter range
0x1 - 0x36EE80 (x 1 ms)

Default
0x7D0 (2 seconds)

https://www.digi.com/resources/documentation/Digidocs/90002219/
https://www.digi.com/resources/documentation/Digidocs/90002219/

AT commands Sleep settings commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 129

SN (Number of Sleep Periods)
Set or read the number of sleep periods value. This command controls the number of sleep periods
that must elapse between assertions of the ON_SLEEP line during the wake time of Asynchronous or
Synchronous Cyclic Sleep. This allows external circuitry to sleep longer than the SP time.

Parameter range
1 - 0xFFFF

Default
1

WH (Wake Host Delay)
Sets or displays the wake host timer value. You can use WH to give a sleeping host processor
sufficient time to power up after the device asserts the ON_SLEEP line.
If you set WH to a non-zero value, this timer specifies a time in milliseconds that the device delays
after waking from sleep before sending data out the UART or transmitting an I/O sample. If the device
receives serial characters, the WH timer stops immediately.

Parameter range
0 - 0xFFFF (x 1 ms)

Default
0

SO (Sleep Options)
You can set or clear any of the available sleep option bits.
You cannot set bit 0 and bit 1 at the same time.

Parameter range
0 - 0x13E

Bit Option

0 Sleep coordinator; setting this bit causes a sleep compatible device to always act as sleep
coordinator.

1 Non-sleep coordinator; setting this bit causes a device to never act as a sleep coordinator.

2 Enable API sleep status messages.

3 Disable early wake-up for missed syncs.

4 Enable node type equality (disables seniority based on device type).

5 Disable coordinator rapid sync deployment mode.

For asynchronous sleep devices, the following sleep bit field options are defined:

AT commands Diagnostic - sleep status/timing commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 130

Bit Option

8 Always wake for ST time.

Default
0

Diagnostic - sleep status/timing commands
The following AT commands are Diagnostic sleep status/timing commands.

SS (Sleep Status)
Queries a number of Boolean values that describe the device's status.

Bit Description

0 This bit is true when the network is awake and able to receive transmissions.

1 This bit is true if the node currently acts as a network sleep coordinator.

2 This bit is true if the node ever receives a valid sync message after it powers on.

3 This bit is true if the node receives a sync message in the current wake cycle.

4 This bit is true if you alter the sleep settings on the device so that the node
nominates itself and sends a sync message with the new settings at the beginning of
the next wake cycle.

5 This bit is true if you request that the node nominate itself as the sleep coordinator
using the Commissioning Pushbutton or the CB2 command.

6 This bit is true if the node is currently in deployment mode.

All other bits Reserved. Ignore all non-documented bits.

Parameter range
N/A

Default
N/A

OS (Operating Sleep Time)
Reads the current network sleep time that the device is synchronized to, in units of 10 milliseconds. If
the device has not been synchronized, thenOS returns the value of SP.
If the device synchronizes with a sleeping router network,OSmay differ from SP.

Parameter range
N/A

Default
N/A

AT commands UART interface commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 131

OW (Operating Wake Time)
Reads the current network wake time that a device is synchronized to, in 1 ms units.
If the device has not been synchronized, thenOW returns the value of ST.
If the device synchronizes with a sleeping router network,OW may differ from ST.

Parameter range
N/A

Default
N/A

MS (Missed Sync Messages)
Reads the number of sleep or wake cycles since the device received a sync message.

Parameter range
N/A

Default
N/A

SQ (Missed Sleep Sync Count)
Counts the number of sleep cycles in which the device does not receive a sleep sync.
Set the value to 0 to reset this value.
When the value reaches 0xFFFF it does not increment anymore.

Parameter range
0 - 0xFFFF

Default
N/A

UART interface commands
The following AT commands are serial interfacing commands.

BD (Baud Rate)
To request non-standard baud rates with values above 0x80, you can use the Serial Console toolbar in
XCTU to configure the serial connection (if the console is connected), or click the Connect button (if
the console is not yet connected).
When you send non-standard baud rates to a device, it stores the closest interface data rate
represented by the number in the BD register. Read the BD command by sending ATBDwithout a
parameter value, and the device returns the value stored in the BD register.

Parameter range
Standard baud rates: 0x0 - 0x0A
Non-standard baud rates: 0x12C - 0x0EC400

AT commands UART interface commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 132

Parameter Description

0x0 1200 b/s

0x1 2400 b/s

0x2 4800 b/s

0x3 9600 b/s

0x4 19200 b/s

0x5 38400 b/s

0x6 57600 b/s

0x7 115200 b/s

0x8 230400 b/s

0x9 460,800 b/s

0xA 921,600 b/s

0x4B0 (1200 b/s) to 0xEC400 (967680 b/s) (non standard baud rates)

Default
0x03 (9600 baud)

NB (Parity)
Set or read the serial parity settings for UART communications.

Parameter range
0x00 - 0x02

Parameter Description

0x00 No parity

0x01 Even parity

0x02 Odd parity

Default
0

SB (Stop Bits)
Sets or displays the number of stop bits for UART communications.

Parameter range
0 - 1

AT commands UART interface commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 133

Parameter Configuration

0 One stop bit

1 Two stop bits

Default
0

FT (Flow Control Threshold)
Set or display the flow control threshold.
The device de-asserts CTS when FT bytes are in the UART receive buffer. It re-asserts CTS when less
than FT bytes are in the UART receive buffer.

Parameter range
0x14 - 0x110 bytes

Default
0xD9

RO (Packetization Timeout)
Set or read the number of character times of inter-character silence required before transmission
begins when operating in Transparent mode.
A “character time” is the amount of time it takes to send a single ASCII character at the operating
baud rate (BD).
Set RO to 0 to transmit characters as they arrive instead of buffering them into one RF packet.
The RO command only applies to Transparent mode, it does not apply to API mode.

Parameter range
0 - 0xFF (x character times)

Default
3

AP (API Enable)
Set or read the API mode setting. The device can format the RF packets it receives into API frames
and sends them out the serial port.
When you enable API, you must format the serial data as API frames because Transparent operating
mode is disabled.

Parameter range
0 - 2

AT commands Command mode options

Digi XBee3® DigiMesh 2.4 RF Module User Guide 134

Parameter Description

0 API disabled (operate in Transparent mode)

1 API enabled

2 API enabled (with escaped control characters)

Default
0

AO (API Options)
The API data frame output format for RF packets received.
Use AO to enable different API output frames.

Parameter range
0 - 1

Parameter Description

0 API Rx Indicator - 0x90, this is for standard data frames.

1 API Explicit Rx Indicator - 0x91, this is for Explicit Addressing data frames.

Default
0

AZ (Extended API Options)
Optionally output additional ZCLmessages that would normally be masked by the XBee application.
Use this when debugging OTA firmware updates by enabling client-side messages to be sent out of
the serial port.

Parameter range
0 - 2

Parameter Description

0 Suppress ZCL output

1 Reserved

2 Output supported ZCL packets

Default
0

Command mode options
The following commands affect how Commandmode operates.

AT commands Command mode options

Digi XBee3® DigiMesh 2.4 RF Module User Guide 135

CC (Command Character)
The character value the device uses to enter Commandmode.
The default value (0x2B) is the ASCII code for the plus (+) character. You must enter it three times
within the guard time to enter Commandmode. To enter Commandmode, there is also a required
period of silence before and after the command sequence characters of the Commandmode
sequence (GT + CC + GT). The period of silence prevents inadvertently entering Commandmode. For
more information, see Enter Commandmode.

Parameter range
0 - 0xFF
Recommended: 0x20 - 0x7F (ASCII)

Default
0x2B (the ASCII plus character: +)

CT (Command Mode Timeout)
Sets or displays the Commandmode timeout parameter. If a device does not receive any valid
commands within this time period, it returns to Transparent mode or API mode.

Parameter range
2 - 0x1770 (x 100 ms)

Default
0x64 (10 seconds)

GT (Guard Time)
Set the required period of silence before and after the command sequence characters of the
Commandmode sequence, GT + CC + GT (including spaces). The period of silence prevents
inadvertently entering Commandmode. For more information, see Enter Commandmode.

Parameter range
0x2 - 0x6D3 (x 1 ms)

Default
0x3E8 (one second)

CN (Exit Command mode)
Executable command. CN immediately exits Commandmode and applies pending changes.

Parameter range
N/A

Default
N/A

AT commands MicroPython commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 136

MicroPython commands
The following commands relate to using MicroPython on the XBee3 DigiMesh RF Module.

PS (Python Startup)
Sets whether or not the XBee3 DigiMesh RF Module runs the stored Python code at startup.

Range
0 - 1

Parameter Description

0 Do not run stored Python code at startup.

1 Run stored Python code at startup.

Default
0

PY (MicroPython Command)
Interact with the XBee3 DigiMesh RF Module using MicroPython. PY is a command with sub-
commands. These sub-commands are arguments to PY.

PYB (Bundled Code Report)
You can store compiled code in flash using the os.bundle() function in the MicroPython REPL; refer to
the Digi MicroPython Programming Guide. The PYB sub-command reports details of the bundled code.
In Commandmode, it returns two lines of text, for example:

bytecode: 619 bytes (hash=0x0900DBCE)
compiled: 2017-05-09T15:49:44

The messages are:

n bytecode: the size of bytecode stored in flash and its 32-bit hash. A size of 0 indicates that
there is no stored code.

n compiled: a compilation timestamp. A timestamp of 2000-01-01T00:00:00 indicates that the
clock was not set during compilation.

In API mode, PYB returns three 32-bit big-endian values:

n bytecode size
n bytecode hash
n timestamp as seconds since 2000-01-01T00:00:00

PYE (Erase Bundled Code)
PYE interrupts any running code, erases any bundled code and then does a soft-reboot on the
MicroPython subsystem.

PYV (Version Report)
Report the MicroPython version.

https://www.digi.com/resources/documentation/Digidocs/90002219/

AT commands File system commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 137

PY^ (Interrupt Program)
Sends KeyboardInterrupt to MicroPython. This is useful if there is a runaway MicroPython program
and you have filled the stdin buffer. You can enter Commandmode (+++) and send ATPY^ to interrupt
the program.

Default
N/A

File system commands
To access the file system, enter Commandmode and use the following commands. All commands
block the AT command processor until completed and only work from Commandmode; they are not
valid for API mode or MicroPython's xbee.atcmd() method. Commands are case-insensitive as are file
and directory names. Optional parameters are shown in square brackets ([]).

FS (File System)
FS is a command with sub-commands. These sub-commands are arguments to FS.

Error responses
If a command succeeds it returns information such as the name of the current working directory or a
list of files, or OK if there is no information to report. If it fails, you see a detailed error message
instead of the typical ERROR response for a failing AT command. The response is a named error code
and a textual description of the error.

Note The exact content of error messages may change in the future. All errors start with a upper case
E, followed by one or more uppercase letters and digits, a space, and an description of the error. If
writing your own AT command parsing code, you can determine if an FS command response is an error
by checking if the first letter of the response is upper case E.

FS (File System)
When sent without any parameters, FS prints a list of supported commands.

FS PWD
Prints the current working directory, which always starts with / and defaults to /flash at startup.

FS CD directory
Changes the current working directory to directory. Prints the current working directory or an error if
unable to change to directory.

FS MD directory
Creates the directory directory. Prints OK if successful or an error if unable to create the requested
directory.

FS LS [directory]
Lists files and directories in the specified directory. The directory parameter is optional and defaults
to a period (.), which represents the current directory. The list ends with a blank line.
Entries start with zero or more spaces, followed by file size or the string <DIR> for directories, then a
single space character and the name of the entry. Directory names end with a forward slash (/) to
differentiate them from files.

AT commands File system commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 138

<DIR> ./
<DIR> ../
<DIR> lib/

32 test.txt

FS PUT filename
Starts a YMODEM receive on the XBee Smart Modem, storing the received file to filename and
ignoring the filename that appears in block 0 of the YMODEM transfer. The XBee Smart Modem sends
a prompt (Receiving file with YMODEM...) when it is ready to receive, at which point you should
initiate a YMODEM send in your terminal emulator.
If the command is incorrect, the reply will be an error as described in Error responses.

FS HASH filename
Print a SHA-256 hash of a file to allow for verification against a local copy of the file. On Windows, you
can generate a SHA-256 hash of a file with the command certutil -hashfile test.txt SHA256. On Mac
and Linux use shasum -b -a 256 test.txt.

FS GET filename
Starts a YMODEM send of filename on the XBee device. When it is ready to send, the XBee Smart
Modem sends a prompt: (Sending file with YMODEM...). When the prompt is sent, you should initiate
a YMODEM receive in your terminal emulator.
If the command is incorrect, the reply will be an error as described in Error responses.

FS RM file_or_directory
Removes the file or empty directory specified by file_or_directory. This command fails with an error if
file_or_directory does not exist, is not empty, refers to the current working directory or one of its
parents.

Note Removing a file does not reclaim the space used by that file. Use the ATFS INFO command to
see how much space is used up by removed files.

FS INFO
Report on the size of the filesystem, showing bytes in use, available, marked bad and total. The report
ends with a blank line, as with most multi-line AT command output. Example output:

204800 used
695296 free

0 bad
900096 total

FS FORMAT confirm
Formats the file system, leaving it with a default directory structure. Pass the word confirm as the
first parameter to confirm the format. The XBee Smart Modem responds with Formatting... when the
format starts, and will print OK followed by a carriage return when it finishes.

FK (File System Public Key)
Configures the device's File System Public Key.
The 65-byte public key is required to verify that the file system that is downloaded over-the-air is a
valid XBee3 file system compatible with the DigiMesh firmware.
For further information, refer to Set the public key on the XBee3 device.

AT commands UART pin configuration commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 139

Parameter range
A valid 65-byte ECDSA public key.
Other accepted parameters:
0 = Clear the public key
1 = Returns the upper 48 bytes of the public key
2 = Returns the lower 17 bytes of the public key

Default
0

Note The Default value of 0 indicates that no public key has been set and hence, all file system
updates will be rejected.

UART pin configuration commands
The following commands are related to pin configuration for the UART interface.

D6 (DIO6/RTS Configuration)
Sets or displays the DIO6/RTS configuration (Micro pin 27/SMT pin 29/TH pin 16).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

1 RTS flow control

2 N/A

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

D7 (DIO7/CTS Configuration)
Sets or displays the DIO7/CTS configuration (Micro pin 24/SMT pin 25/TH pin 12).

Parameter range
0, 1, 3 - 7

AT commands UART pin configuration commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 140

Parameter Description

0 Disabled

1 CTS flow control

2 N/A

3 Digital input

4 Digital output, low

5 Digital output, high

6 RS-485 enable, low

7 RS-485 enable, high

Default
1

P3 (DIO13/UART_DOUT)
Sets or displays the DIO13/UART_DOUT configuration (Micro pin 3/SMT pin 3/TH pin 2).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

1 UART DOUT

2 N/A

3 Digital input

4 Digital output, low

5 Digital output, high

Default
1

P4 (DIO14/UART_DIN Configuration)
Sets or displays the DIO14/UART_DIN configuration (Micro pin 4/SMT pin 4/TH pin 3).

Parameter range
0, 1, 3 - 5

AT commands SPI interface commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 141

Parameter Description

0 Disabled

1 UART DIN

2 N/A

3 Digital input

4 Digital output, low

5 Digital output, high

Default
1

SPI interface commands
The following commands affect the SPI serial interface on SMT and MMT variants. These commands
are not applicable to the through-hole variant of the XBee3; see D1 through D4 and P2 for through-
hole SPI support.

P5 (DIO15/SPI_MISO Configuration)
Sets or displays the DIO15/SPI_MISO configuration (Micro pin 16/SMT pin 17). This only applies to
surface-mount andmicro devices.

Parameter range
0, 1, 4, 5

Parameter Description

0 Disabled

1 SPI_MISO

2 N/A

3 N/A

4 Digital output, low

5 Digital output, high

Default
1

P6 (DIO16/SPI_MOSI Configuration)
Sets or displays the DIO16/SPI_MOSI configuration (Micro pin 15/SMT pin 16). This only applies to
surface-mount andmicro devices.

AT commands SPI interface commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 142

Parameter range
0, 1, 4, 5

Parameter Description

0 Disabled

1 SPI_MOSI

2 N/A

3 N/A

4 Digital output, low

5 Digital output, high

Default
1

P7 (DIO17/SPI_SSEL Configuration)
Sets or displays the DIO17/SPI_SSEL configuration (Micro pin 14/SMT pin 15). This only applies to
surface-mount andmicro devices.

Parameter range
0 - 1, 4, 5

Parameter Description

0 Disabled

1 SPI_SSEL

2 N/A

3 N/A

4 Digital output, low

5 Digital output, high

Default
1

P8 (DIO18/SPI_CLK Configuration)
Sets or displays the DIO18/SPI_CLK configuration (Micro pin 13/SMT pin 14). This only applies to
surface-mount andmicro devices.

Parameter range
0, 1, 4, 5

AT commands I/O settings commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 143

Parameter Description

0 Disabled

1 SPI_CLK

2 N/A

3 N/A

4 Digital output, low

5 Digital output, high

Default
1

P9 (DIO19/SPI_ATTN Configuration)
Sets or displays the DIO19/SPI_ATTN configuration (Micro pin 11/SMT pin 12). This only applies to
surface-mount andmicro devices.

Parameter range
0, 1, 4, 5

Parameter Description

0 Disabled

1 SPI_ATTN

2 N/A

3 N/A

4 Digital output, low

5 Digital output, high

Default
1

I/O settings commands
The following commands configure the various I/O lines available on the XBee3 DigiMesh RF Module.

D0 (DIO0/ADC0/Commissioning Configuration)
Sets or displays the DIO0/ADC0/CB configuration (Micro pin 31/SMT pin 33/TH pin 20).

Parameter range
0 - 5

AT commands I/O settings commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 144

Parameter Description

0 Disabled

1 Commissioning Pushbutton

2 ADC

3 Digital input

4 Digital output, low

5 Digital output, high

Default
1

D1 (DIO1/ADC1/TH_SPI_ATTN Configuration)
Sets or displays the DIO1/ADC1/TH_SPI_ATTN configuration (Micro pin 30/SMT pin 32/TH pin 19).

Parameter range
SMT/MMT: 0, 2 - 5
TH: 0 - 5

Parameter Description

0 Disabled

1 SPI_ATTN for the through-hole device
N/A for the surface-mount device

2 ADC

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

D2 (DIO2/ADC2/TH_SPI_CLK Configuration)
Sets or displays the DIO2/ADC2/TH_SPI_CLK configuration (Micro pin 29/SMT pin 31/TH pin 18).

Parameter range
SMT/MMT: 0, 2 - 5
TH: 0 - 5

AT commands I/O settings commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 145

Parameter Description

0 Disabled

1 SPI_CLK for through-hole devices
N/A for surface-mount devices

2 ADC

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

D3 (DIO3/ADC3/TH_SPI_SSEL Configuration)
Sets or displays the DIO3/ADC3/TH_SPI_SSEL configuration (Micro pin 28/SMT pin 30/TH pin 17).

Parameter range
SMT/MMT: 0, 2 - 5
TH: 0 - 5

Parameter Description

0 Disabled

1 SPI_SSEL for the through-hole device
N/A for surface-mount device

2 ADC

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

D4 (DIO4/TH_SPI_MOSI Configuration)
Sets or displays the DIO4/TH_SPI_MOSI configuration (Micro pin 23/SMT pin 24/TH pin 11).

Parameter range
SMT/MMT: 0, 3 - 5
TH: 0, 1, 3 - 5

AT commands I/O settings commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 146

Parameter Description

0 Disabled

1 SPI_MOSI for the through-hole device
N/A for the surface-mount andmicro device

2 N/A

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

D5 (DIO5/Associate Configuration)
Sets or displays the DIO5/ASSOCIATED_INDICATOR configuration (Micro pin 26/SMT pin 28/TH pin 15).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

1 Associate LED indicator - blinks when associated

2 N/A

3 Digital input

4 Digital output, low

5 Digital output, high

Default
1

D8 (DIO8/DTR/SLP_Request Configuration)
Sets or displays the DIO8/DTR/SLP_RQ configuration (Micro pin 9/SMT pin 10/TH pin 9).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

AT commands I/O settings commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 147

Parameter Description

1 DTR/Sleep_Request (used with pin sleep and cyclic sleep with pin wake)

2 N/A

3 Digital input

4 Digital output, low

5 Digital output, high

Default
1

D9 (DIO9/ON_SLEEP Configuration)
Sets or displays the DIO9/ON_SLEEP configuration (Micro pin 25/SMT pin 26/TH pin 13).

Parameter range
0, 1, 3 - 5

Parameter Description

0 Disabled

1 ON/SLEEP indicator

2 N/A

3 Digital input

4 Digital output, low

5 Digital output, high

Default
1

P0 (DIO10/RSSI/PWM0 Configuration)
Sets or displays the DIO10/RSSI/PWM0 configuration (Micro pin 7/SMT pin 7/TH pin 6).
When configured as RSSI PWM output, the device outputs a PWM signal with a duty cycle equivalent to
the dBm of the received packet.
Use RP command to configure the timeout.
When configured as PWM output (2): you can use M0 to explicitly control the PWM0 output. When used
with Analog line passing, PWM0 corresponds with ADC0.

Parameter range
0 - 5

AT commands I/O settings commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 148

Parameter Description

0 Disabled

1 RSSI PWM output

2 PWM0 output. M0 (PWM0 Duty Cycle) or I/O line passing control the value.

3 Digital input

4 Digital output, low

5 Digital output, high

Default
1

P1 (DIO11/PWM1 Configuration)
Sets or displays the DIO11 configuration (Micro pin 8/SMT pin 8/TH pin 7).

Parameter range
0, 2 - 5

Parameter Description

0 Disabled

1 N/A

2 PWM1 output. M1 (PWM1 Duty Cycle) or I/O line passing control the value.

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

P2 (DIO12/TH_SPI_MISO Configuration)
Sets or displays the DIO12/TH_SPI_MISO configuration (Micro pin 5/SMT pin 5/TH pin 4).

Parameter range
SMT/MMT: 0, 3 - 5
TH: 0, 1, 3 - 5

Parameter Description

0 Disabled

AT commands I/O settings commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 149

Parameter Description

1 SPI_MISO for the through-hole device
N/A for the surface-mount andmicro device

2 N/A

3 Digital input

4 Digital output, low

5 Digital output, high

Default
0

PR (Pull-up/Down Resistor Enable)
The bit field that configures the internal pull-up resistor status for the I/O lines.

n If you set a PR bit to 1, it enables the pull-up/down resistor
n If you set a PR bit to 0, it specifies no internal pull-up/down resistor.

PR and PD only affect lines that are configured as digital inputs (3) or disabled (0).
The following table defines the bit-field map for PR and PD commands.

Bit I/O line Micro pin Surface-mount pin Through-hole pin

0 DIO4 23 24 11

1 DIO3 28 30 17

2 DIO2 29 31 18

3 DIO1 30 32 19

4 DIO0 31 33 20

5 DIO6 27 29 16

6 DIO8 9 10 9

7 DIO14 4 4 3

8 DIO5 26 28 15

9 DIO9 25 26 13

10 DIO12 5 5 4

11 DIO10 7 7 6

12 DIO11 8 8 7

13 DIO7 24 25 12

14 DIO13 3 3 2

AT commands I/O settings commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 150

Bit I/O line Micro pin Surface-mount pin Through-hole pin

15 DIO15 16 17 N/A

16 DIO16 15 16 N/A

17 DIO17 14 15 N/A

18 DIO18 13 14 N/A

19 DIO19 11 12 N/A

Parameter range
Through-hole: 0 - 0xFFFF
SMT/MMT: 0 - 0xFFFFF

Default
0xFFFF

PD (Pull Up/Down Direction)
The resistor pull direction bit field (1 = pull-up, 0 = pull-down) for corresponding I/O lines that are set
by the PR command.
See PR (Pull-up/Down Resistor Enable) for the bit mappings.

Parameter range
Through-hole: 0 - 0xFFFF
SMT/MMT: 0 - 0xFFFFF

Default
0xFFFF

IO (Set Digital I/O Lines)
Sets digital output levels. This allows DIO lines setup as outputs to be changed through Command
mode.

Parameter range
8-bit bit map; each bit represents the level of an I/O line set up as an output

Default
N/A

M0 (PWM0 Duty Cycle)
The duty cycle of the PWM0 line (Micro pin 7/SMT pin 7).
If IA (I/O Input Address) is set correctly and P0 (DIO10/RSSI/PWM0 Configuration) is configured as
PWM0 output, incoming AD0 samples automatically modify the PWM0 value. See PT (PWM Output
Timeout).
To configure the duty cycle of PWM0:

AT commands I/O settings commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 151

1. Enable PWM0 output (P0 = 2).
2. Change M0 to the desired value.
3. Apply settings (use CN or AC).

The PWM period is 64 µs and there are 0x03FF (1023 decimal) steps within this period. WhenM0 = 0
(0% PWM), 0x01FF (50% PWM), 0x03FF (100% PWM), and so forth.

Parameter range
0 - 0x3FF

Default
0

M1 (PWM1 Duty Cycle)
If IA (I/O Input Address) is set correctly and P1 (DIO11/PWM1 Configuration) is configured as PWM1
output, incoming AD0 samples automatically modify the PWM1 value. See PT (PWM Output Timeout).
To configure the duty cycle of PWM1:

1. Enable PWM1 output (P1 = 2).
2. Change M1 to the desired value.
3. Apply settings (use CN or AC).

The PWM period is 64 µs and there are 0x03FF (1023 decimal) steps within this period. WhenM1 = 0
(0% PWM), 0x01FF (50% PWM), 0x03FF (100% PWM), and so forth.

Parameter range
0 - 0x3FF

Default
0

RP command
The PWM timer expiration in 0.1 seconds. RP sets the duration of pulse width modulation (PWM) signal
output on the RSSI pin. The signal duty cycle updates with each received packet and shuts off when
the timer expires.
When RP = 0xFF, the output is always on.

Parameter range
0 - 0xFF (x 100 ms), 0xFF

Default
0x28 (four seconds)

LT command
Set or read the Associate LED blink time. If you use D5 (DIO5/Associate Configuration) to enable the
Associate LED functionality (DIO5/Associate pin), this value determines the on and off blink times for
the LED when the device has joined the network.
If LT = 0, the device uses the default blink rate of 250 ms.

AT commands I/O sampling commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 152

For all other LT values, the firmware measures LT in 10 ms increments.

Parameter range
0, 0x14 - 0xFF (x 10 ms)

Default
0

CB (Commissioning Button)
Use CB to simulate Commissioning Pushbutton presses in software.
You can enable a physical commissioning pushbutton with D0 (DIO0/ADC0/Commissioning
Configuration).
Set the parameter value to the number of button presses that you want to simulate. For example,
send CB1 to perform the action of pressing the Commissioning Pushbutton once.

Parameter range
1, 2, 4

Parameter Description

1 Keeps device awake for 30 seconds.

2 Nominate the node as the sleep coordinator for synchronous sleep networks.

4 Restore defaults (equivalent to sending an RE (Restore Defaults)).

Default
N/A

I/O sampling commands
The following commands configure I/O sampling on an originating device. Any I/O sample generated
by this device is sent to the address specified by DH and DL. You must configure at least one I/O line as
an input or output for a sample to be generated.

IS (I/O Sample)
Immediately forces an I/O sample to be generated. If you issue the command to the local device, the
sample data is sent out the local serial interface. If sent remotely, the sample data is returned as a AT
Command Response frame - 0x88.
If the device receives ERROR as a response to an IS query, there are no valid I/O lines to sample.

Parameter range
N/A

Default
N/A

AT commands I/O sampling commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 153

IR (Sample Rate)
Determines the I/O sample rate used to generate outgoing I/O sample data. When the IR value is
greater than 0, the device samples and transmits all enabled digital I/O and ADCs every IR
milliseconds. I/O Samples transmit to the address specified by DH +DL.
At least one I/O line must be configured as an input or explicit output for samples to be generated.

Parameter range
0, 0x32 - 0xFFFF (ms)

Default
0

IC (DIO Change Detect)
Set or read the digital I/O pins to monitor for changes in the I/O state.
IC works with the individual pin configuration commands (D0 - D9, P0 - P4). If the device detects a
change on an enabled digital I/O pin, it immediately transmits a digital I/O sample to the address
specified by DH + DL. If sleep is enabled, the edge transition must occur during a wake period to
trigger a change detect.
The data transmission contains only DIO data.
IC is a bitmask you can use to enable or disable edge detection on individual digital I/O lines. Only
DIO0 through DIO14 can be sampled using a Change Detect.
Set unused bits to 0.

Bit field

Bit I/O line Micro pin Surface-mount pin Through-hole pin

0 DIO0 31 33 20

1 DIO1 30 32 19

2 DIO2 29 31 18

3 DIO3 28 30 17

4 DIO4 23 24 11

5 DIO5 26 28 15

6 DIO6 27 29 16

7 DIO7 24 25 12

8 DIO8 9 10 9

9 DIO9 25 26 13

10 DIO10 7 7 6

11 DIO11 8 8 7

12 DIO12 5 5 4

AT commands I/O sampling commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 154

Bit I/O line Micro pin Surface-mount pin Through-hole pin

13 DIO13 3 3 2

14 DIO14 4 4 3

15 N/A N/A N/A N/A

Parameter range
0 - 0x7FFF

Default
0

AV (Analog Voltage Reference)
The analog voltage reference used for A/D sampling.
ADC lines are 10-bit analog inputs.

Parameter range
0 - 2

Parameter Description

0 1.25 V reference

1 2.5 V reference

2 VDD reference

Default
0

IF (Sleep Sample Rate)
Set or read the number of sleep cycles that must elapse between periodic I/O samples. This allows
the firmware to take I/O samples only during some wake cycles. During those cycles, the firmware
takes I/O samples at the rate specified by IR (Sample Rate).
To enable periodic sampling, set IR to a non-zero value, and enable the analog or digital I/O
functionality of at least one device pin. The sample rate is measured in milliseconds.
For more information, see the following commands:

n D0 (DIO0/ADC0/Commissioning Configuration) through D9 (DIO9/ON_SLEEP Configuration)
n P0 (DIO10/RSSI/PWM0 Configuration) through P2 (DIO12/TH_SPI_MISO Configuration)

Parameter range
1 - 0xFFFF (x 1 ms)

Default
1

AT commands I/O line passing commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 155

I/O line passing commands
Configure the device for I/O line passing. When enabled, incoming I/O sample data will affect the state
of analog and digital lines that are configured as output.

IA (I/O Input Address)
The source address of the device to which outputs are bound.
To disable I/O line passing, set all bytes to 0xFF.
To allow any I/O packet addressed to this device (including broadcasts) to change the outputs, set IA
to 0xFFFF.

Parameter range
0 - 0xFFFF FFFF FFFF FFFF

Default
0xFFFFFFFFFFFFFFFF (I/O line passing disabled)

IU (Send I/O Sample to Serial Port)
Indicates whether or not I/O samples should be sent to the serial port. 0 suppresses output; 1 allows
output (only if the device is in API mode).

Parameter range
0 - 1

Parameter Description

0 Disabled

1 Enabled

Default
1

T0 (D0 Timeout)
Specifies how long pin D0 (DIO0/ADC0/Commissioning Configuration) holds a given value before it
reverts to configured value. If set to 0, there is no timeout.

Parameter range
0 - 0x1770 (x 100 ms)

Default
0

T1 (D1 Output Timeout)
Specifies how long pin D1 (DIO1/ADC1/TH_SPI_ATTN Configuration) holds a given value before it
reverts to configured value. If set to 0, there is no timeout.

AT commands I/O line passing commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 156

Parameter range
0 - 0x1770 (x 100 ms)

Default
0

T2 (D2 Output Timeout)
Specifies how long pin D2 (DIO2/ADC2/TH_SPI_CLK Configuration) holds a given value before it reverts
to configured value. If set to 0, there is no timeout.

Parameter range
0 - 0x1770 (x 100 ms)

Default
0

T3 (D3 Output Timeout)
Specifies how long pin D3 (DIO3/ADC3/TH_SPI_SSEL Configuration) holds a given value before it
reverts to configured value. If set to 0, there is no timeout.

Parameter range
0 - 0x1770 (x 100 ms)

Default
0

T4 (D4 Output Timeout)
Specifies how long pin D4 (DIO4/TH_SPI_MOSI Configuration) holds a given value before it reverts to
configured value. If set to 0, there is no timeout.

Parameter range
0 - 0x1770 (x 100 ms)

Default
0

T5 (D5 Output Timeout)
Specifies how long pin D5 (DIO5/Associate Configuration) holds a given value before it reverts to
configured value. If set to 0, there is no timeout.

Parameter range
0 - 0x1770 (x 100 ms)

Default
0

AT commands I/O line passing commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 157

T6 (D6 Output Timeout)
Specifies how long pin D6 (DIO6/RTS Configuration) holds a given value before it reverts to configured
value. If set to 0, there is no timeout.

Parameter range
0 - 0x1770 (x 100 ms)

Default
0

T7 (D7 Output Timeout)
Specifies how long pin D7 (DIO7/CTS Configuration) holds a given value before it reverts to configured
value. If set to 0, there is no timeout.

Parameter range
0 - 0x1770 (x 100 ms)

Default
0

T8 (D8 Timeout)
Specifies how long pin D8 (DIO8/DTR/SLP_Request Configuration) holds a given value before it reverts
to configured value. If set to 0, there is no timeout.

Parameter range
0 - 0x1770 (x 100 ms)

Default
0

T9 (D9 Timeout)
Specifies how long pin D9 (DIO9/ON_SLEEP Configuration) holds a given value before it reverts to
configured value. If set to 0, there is no timeout.

Parameter range
0 - 0x1770 (x 100 ms)

Default
0

Q0 (P0 Timeout)
Specifies how long pin P0 holds a given value before it reverts to configured value. If set to 0, there is
no timeout.

Parameter range
0 - 0x1770 (x 100 ms)

AT commands Diagnostics – Firmware/Hardware Information

Digi XBee3® DigiMesh 2.4 RF Module User Guide 158

Default
0

Q1 (P1 Timeout)
Specifies how long pin P1 holds a given value before it reverts to configured value. If set to 0, there is
no timeout.

Parameter range
0 - 0x1770 (x 100 ms)

Default
0

Q2 (P2 Timeout)
Specifies how long pin P2 holds a given value before it reverts to configured value. If set to 0, there is
no timeout.

Parameter range
0 - 0x1770 (x 100 ms)

Default
0

PT (PWM Output Timeout)
Specifies how long both PWM outputs (P0, P1) output a given PWM signal before it reverts to the
configured value (M0/M1). If set to 0, there is no timeout. This timeout only affects these pins when
they are configured as PWM output.

Parameter range
0 - 0x1770 (x 100 ms)

Default
0xFF

Diagnostics – Firmware/Hardware Information
The following AT commands provide information about the XBee3 DigiMesh RF Module hardware and
firmware.

VR (Firmware Version)
Reads the firmware version on a device.

Parameter range
0x3000 - 0x30FF [read-only]

Default
Set in the firmware

AT commands Diagnostics – Firmware/Hardware Information

Digi XBee3® DigiMesh 2.4 RF Module User Guide 159

VL (Version Long)
Shows detailed version information including the application build date and time.

Parameter range
N/A

Default
N/A

VH (Bootloader Version)
Reads the bootloader version of the device.

Parameter range
N/A

Default
N/A

HV (Hardware Version)
Display the hardware version number of the device.

Parameter range
0 - 0xFFFF [read-only]

Default
Set in firmware

%C (Hardware/Software Compatibility)
Specifies what firmware is compatible with this device's hardware.%C is compared to the to the
"compatibility_number" field of the firmware configuration xml file. Firmware with a compatibility
number lower than the value returned by%C cannot be loaded onto the board. If an invalid firmware
is loaded, the device will not boot until a valid firmware is reloaded.

Parameter range
[read-only]

Default
N/A

%P (Invoke Bootloader)
Forces the device to reset into the bootloader menu.
This command can only be issued locally.

Parameter range
N/A

AT commands Diagnostics – Firmware/Hardware Information

Digi XBee3® DigiMesh 2.4 RF Module User Guide 160

Default
N/A

%V (Supply Voltage)
Reads the voltage on the Vcc pin in mV.

Parameter range
0 - 0xFFFF (in mV) [read only]

Default
N/A

TP (Temperature)
The current module temperature in degrees Celsius. The temperature is represented in two’s
complement, as shown in the following example:
1 °C = 0x0001 and -1°C = 0xFFFF

Parameter range
0 - 0xFFFF (Celsius) [read-only]

Default
N/A

DD (Device Type Identifier)
Stores the Digi device type identifier value. Use this value to differentiate between multiple types of
devices.

Parameter range
0 - 0xFFFFFFFF

Default
0x50000

CK (Configuration CRC)
Reads the cyclic redundancy check (CRC) of the current AT command configuration settings to
determine if the configuration has changed.
After a firmware update this commandmay return a different value.

Parameter range
0 - 0xFFFF [read-only]

Default
N/A

AT commands Memory access commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 161

FR (Software Reset)
Resets the device. The device responds immediately with anOK and performs a reset 100 ms later.
If you issue FRwhile the device is in Commandmode, the reset effectively exits Commandmode.

Parameter range
N/A

Default
N/A

Memory access commands
This section details the executable commands that provide memory access to the device.

AC (Apply Changes)
Immediately applies new settings without exiting Commandmode.

Parameter range
N/A

Default
N/A

WR (Write)
Immediately writes parameter values to non-volatile flash memory so they persist through a power
cycle. Operating network parameters are persistent and do not require a WR command for the device
to reattach to the network.
Writing parameters to non-volatile memory does not apply the changes immediately. However, since
the device uses non-volatile memory to determine initial configuration following reset, the written
parameters are applied following a reset.

Note Once you issue a WR command, do not send any additional characters to the device until after
you receive the OK response. Use the WR command sparingly; the device’s flash supports a limited
number of write cycles.

Parameter range
N/A

Default
N/A

RE (Restore Defaults)
Restore device parameters to factory defaults.

Parameter range
N/A

AT commands Custom default commands

Digi XBee3® DigiMesh 2.4 RF Module User Guide 162

Default
N/A

Custom default commands
The following commands are used to assign custom defaults to the device. Send RE (Restore Defaults)
to restore custom defaults. You must send these commands as local AT commands, they cannot be
set using Remote AT Command Request frame - 0x17.

%F (Set Custom Default)
When%F is received, the XBee3 DigiMesh RF Module takes the next command received and applies it
to both the current configuration and the custom defaults, so that when defaults are restored with RE
(Restore Defaults) the custom value is used.

Parameter range
N/A

Default
N/A

!C (Clear Custom Defaults)
Clears all custom defaults. This command does not change the current settings, but only changes the
defaults so that RE (Restore Defaults) restores settings to the factory values.

Parameter range
N/A

Default
N/A

R1 (Restore Factory Defaults)
Restores factory defaults, ignoring any custom defaults set using %F (Set Custom Default).

Parameter range
N/A

Default
N/A

Operate in API mode

API mode overview 164
Use the AP command to set the operation mode 164
API frame format 164

Digi XBee3® DigiMesh 2.4 RF Module User Guide 163

Operate in API mode API mode overview

Digi XBee3® DigiMesh 2.4 RF Module User Guide 164

API mode overview
As an alternative to Transparent operating mode, you can use API operating mode. API mode provides
a structured interface where data is communicated through the serial interface in organized packets
and in a determined order. This enables you to establish complex communication between devices
without having to define your own protocol. The API specifies how commands, command responses
and device status messages are sent and received from the device using the serial interface or the
SPI interface.
We may add new frame types to future versions of the firmware, so we recommend building the ability
to filter out additional API frames with unknown frame types into your software interface.

Use the AP command to set the operation mode
Use AP (API Enable) to specify the operation mode:

AP command
setting Description

AP = 0 Transparent operating mode, UART serial line replacement with API modes
disabled. This is the default option.

AP = 1 API operation.

AP = 2 API operation with escaped characters (only possible on UART).

The API data frame structure differs depending on what mode you choose.

API frame format
An API frame consists of the following:

n Start delimeter
n Length
n Frame data
n Checksum

API operation (AP parameter = 1)
This is the recommended API mode for most applications. The following table shows the data frame
structure when you enable this mode:

Frame fields Byte Description

Start delimiter 1 0x7E

Length 2 - 3 Most Significant Byte, Least Significant Byte

Frame data 4 - number (n) API-specific structure

Checksum n + 1 1 byte

Operate in API mode API frame format

Digi XBee3® DigiMesh 2.4 RF Module User Guide 165

Any data received prior to the start delimiter is silently discarded. If the frame is not received correctly
or if the checksum fails, the XBee replies with a radio status frame indicating the nature of the failure.

API operation with escaped characters (AP parameter = 2)
Setting API to 2 allows escaped control characters in the API frame. Due to its increased complexity,
we only recommend this API mode in specific circumstances. API 2 may help improve reliability if the
serial interface to the device is unstable or malformed frames are frequently being generated.
When operating in API 2, if an unescaped 0x7E byte is observed, it is treated as the start of a new API
frame and all data received prior to this delimiter is silently discarded. For more information on using
this API mode, see the Escaped Characters and API Mode 2 in the Digi Knowledge base.
API escaped operating mode works similarly to API mode. The only difference is that when working in
API escapedmode, the software must escape any payload bytes that match API frame specific data,
such as the start-of-frame byte (0x7E). The following table shows the structure of an API frame with
escaped characters:

Frame fields Byte Description

Start delimiter 1 0x7E

Length 2 - 3 Most Significant Byte, Least Significant Byte Characters escaped if needed

Frame data 4 - n API-specific structure

Checksum n + 1 1 byte

Start delimiter field
This field indicates the beginning of a frame. It is always 0x7E. This allows the device to easily detect a
new incoming frame.

Escaped characters in API frames
If operating in API mode with escaped characters (AP parameter = 2), when sending or receiving a
serial data frame, specific data values must be escaped (flagged) so they do not interfere with the
data frame sequencing. To escape an interfering data byte, insert 0x7D and follow it with the byte to
be escaped (XORed with 0x20).
The following data bytes need to be escaped:

n 0x7E: start delimiter
n 0x7D: escape character
n 0x11: XON
n 0x13: XOFF

To escape a character:

1. Insert 0x7D (escape character).
2. Append it with the byte you want to escape, XORed with 0x20.

In API mode with escaped characters, the length field does not include any escape characters in the
frame and the firmware calculates the checksum with non-escaped data.

http://knowledge.digi.com/articles/Knowledge_Base_Article/Escaped-Characters-and-API-Mode-2

Operate in API mode API frame format

Digi XBee3® DigiMesh 2.4 RF Module User Guide 166

Example: escape an API frame
To express the following API non-escaped frame in API operating mode with escaped characters:

Start delimiter Length Frame type
Frame Data

Checksum
Data

7E 00 0F 17 01 00 13 A2 00 40 AD 14 2E FF FE 02 4E 49 6D

You must escape the 0x13 byte:

1. Insert a 0x7D.
2. XOR byte 0x13 with 0x20: 13 ⊕ 20 = 33

The following figure shows the resulting frame. Note that the length and checksum are the same as
the non-escaped frame.

Start delimiter Length Frame type
Frame Data

Checksum
Data

7E 00 0F 17 01 00 7D 33 A2 00 40 AD 14 2E FF FE 02 4E 49 6D

The length field has a two-byte value that specifies the number of bytes in the frame data field. It does
not include the checksum field.

Length field
The length field is a two-byte value that specifies the number of bytes contained in the frame data
field. It does not include the checksum field.

Frame data
This field contains the information that a device receives or will transmit. The structure of frame data
depends on the purpose of the API frame:

Start delimiter Length

Frame data

ChecksumFrame type Data

1 2 3 4 5 6 7 8 9 ... n n+1

0x7E MSB LSB API frame type Data Single byte

n Frame type is the API frame type identifier. It determines the type of API frame and indicates
how the Data field organizes the information.

n Data contains the data itself. This information and its order depend on the what type of frame
that the Frame type field defines.

Multi-byte values are sent big-endian.

Calculate and verify checksums
To calculate the checksum of an API frame:

1. Add all bytes of the packet, except the start delimiter 0x7E and the length (the second and
third bytes).

2. Keep only the lowest 8 bits from the result.
3. Subtract this quantity from 0xFF.

Operate in API mode API frame format

Digi XBee3® DigiMesh 2.4 RF Module User Guide 167

To verify the checksum of an API frame:

1. Add all bytes including the checksum; do not include the delimiter and length.
2. If the checksum is correct, the last two digits on the far right of the sum equal 0xFF.

Example
Consider the following sample data packet: 7E 00 0A 01 01 50 01 00 48 65 6C 6C 6F B8+

Byte(s) Description

7E Start delimiter

00 0A Length bytes

01 API identifier

01 API frame ID

50 01 Destination address low

00 Option byte

48 65 6C 6C 6F Data packet

B8 Checksum

To calculate the check sum you add all bytes of the packet, excluding the frame delimiter 7E and the
length (the second and third bytes):
7E 00 0A 01 01 50 01 00 48 65 6C 6C 6F B8
Add these hex bytes:
01 + 01 + 50 + 01 + 00 + 48 + 65 + 6C + 6C + 6F = 247
Now take the result of 0x247 and keep only the lowest 8 bits which in this example is 0xC4 (the two
far right digits). Subtract 0x47 from 0xFF and you get 0x3B (0xFF - 0xC4 = 0x3B). 0x3B is the checksum
for this data packet.
If an API data packet is composed with an incorrect checksum, the XBee3 DigiMesh RF Module will
consider the packet invalid and will ignore the data.
To verify the check sum of an API packet add all bytes including the checksum (do not include the
delimiter and length) and if correct, the last two far right digits of the sum will equal FF.
01 + 01 + 50 + 01 + 00 + 48 + 65 + 6C + 6C + 6F + B8 = 2FF

Frame descriptions

The following sections describe the API frames.

AT Command Frame - 0x08 169
AT Command - Queue Parameter Value frame - 0x09 171
Transmit Request frame - 0x10 173
Explicit Addressing Command frame - 0x11 176
Remote AT Command Request frame - 0x17 179
User Data Relay frame - 0x2D 180
AT Command Response frame - 0x88 183
Modem Status frame - 0x8A 185
Transmit Status frame - 0x8B 186
Route Information Packet frame - 0x8D 188
Aggregate Addressing Update frame - 0x8E 191
Receive Packet frame - 0x90 193
Explicit Rx Indicator frame - 0x91 195
I/O Data Sample Rx Indicator frame - 0x92 198
Node Identification Indicator frame - 0x95 200
Remote Command Response frame - 0x97 204
User Data Relay Output - 0xAD 205

Digi XBee3® DigiMesh 2.4 RF Module User Guide 168

Frame descriptions AT Command Frame - 0x08

Digi XBee3® DigiMesh 2.4 RF Module User Guide 169

AT Command Frame - 0x08

Description
Use this frame to query or set command parameters on the local device. This API command applies
changes after running the command. You can query parameter values by sending the AT Command
Frame - 0x08 with no parameter value field (the two-byte AT command is immediately followed by the
frame checksum). Any parameter that is set with this frame type will apply the change immediately. If
you wish to queue multiple parameter changes and apply them later, use the AT Command - Queue
Parameter Value frame - 0x09 instead.
A Transmit Status frame - 0x8B response frame is populated with the parameter value that is
currently set on the device.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame
data
fields Offset Description

Frame
type

3 0x08

AT
command

5-6 Command name: two ASCII characters that identify the AT command.

Parameter
value

7-n If present, indicates the requested parameter value to set the given register.
If no characters are present, it queries the register.

Example
The following example illustrates an AT Command frame when you modify the device's NH parameter
value.

Frame data fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x04

Frame type 3 0x08

Frame ID 4 0x52

AT command 5 0x4E (N)

6 0x48 (H)

Frame descriptions AT Command Frame - 0x08

Digi XBee3® DigiMesh 2.4 RF Module User Guide 170

Frame data fields Offset Example

Parameter value (NH2 = two network hops) 7 0x02

Checksum 8 0x0D

Frame descriptions AT Command - Queue Parameter Value frame - 0x09

Digi XBee3® DigiMesh 2.4 RF Module User Guide 171

AT Command - Queue Parameter Value frame - 0x09

Description
This frame allows you to query or set device parameters. In contrast to the AT Command (0x08)
frame, this frame sets new parameter values and does not apply them until you issue either:

n The AT Command (0x08) frame
n The AC command

When querying parameter values, the 0x09 frame behaves identically to the 0x08 frame; the response
for this command is also an AT Command Response frame (0x88).

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data
fields Offset Description

Frame type 3 0x09

Frame ID 4 Identifies the data frame for the host to correlate with a subsequent
ACK. If set to 0, the device does not send a response.

AT command 5-6 Command name: two ASCII characters that identify the AT command.

Parameter value 7-n If present, indicates the requested parameter value to set the given
register. If no characters are present, queries the register.

Example
The following example sends a command to change the baud rate (BD) to 115200 baud, but does not
apply the changes immediately. The device continues to operate at the previous baud rate until you
apply the changes.

Note In this example, you could send the parameter as a zero-padded 2-byte or 4-byte value.

Frame data fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x05

Frame type 3 0x09

Frame descriptions AT Command - Queue Parameter Value frame - 0x09

Digi XBee3® DigiMesh 2.4 RF Module User Guide 172

Frame data fields Offset Example

Frame ID 4 0x01

AT command 5 0x42 (B)

6 0x44 (D)

Parameter value (BD7 = 115200 baud) 7 0x07

Checksum 8 0x68

Frame descriptions Transmit Request frame - 0x10

Digi XBee3® DigiMesh 2.4 RF Module User Guide 173

Transmit Request frame - 0x10

Description
This frame causes the device to send payload data as an RF packet to a specific destination.

n For broadcast transmissions, set the 64-bit destination address to 0x000000000000FFFF.
n For unicast transmissions, set the 64 bit address field to the address of the desired destination

node.
n Set the reserved field to 0xFFFE.
n Query the NP command to read the maximum number of payload bytes.

You can set the broadcast radius from 0 up to NH. If set to 0, the value of NH specifies the broadcast
radius (recommended). This parameter is only used for broadcast transmissions.
You can read the maximum number of payload bytes with the NP command.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data
fields Offset Description

Frame type 3 0x10

Frame ID 4 Identifies the data frame for the host to correlate with a subsequent ACK.
If set to 0, the device does not send a response.

64-bit
destination
address

5-12 MSB first, LSB last. Set to the 64-bit address of the destination device.
Broadcast = 0x000000000000FFFF

Reserved 13-14 Set to 0xFFFE.

Broadcast
radius

15 Sets the maximum number of hops a broadcast transmission can occur. If
set to 0, the broadcast radius is set to the maximum hops value.

Transmit
options

16 See the Transmit Options table below. Set all other bits to 0.

RF data 17-n Up to NP bytes per packet. Sent to the destination device.

Transmit Options bit field
Bit field

Frame descriptions Transmit Request frame - 0x10

Digi XBee3® DigiMesh 2.4 RF Module User Guide 174

Bit Meaning Description

0 Disable ACK Disable acknowledgments on all unicasts

1 Disable RD Disable Route Discovery on all DigiMesh unicasts

2 NACK Enable unicast NACK messages on all DigiMesh API packets

3 Trace route Enable a unicast Trace Route on all DigiMesh API packets

4 Reserved <set this bit to 0>

5 Reserved <set this bit to 0>

6,7 Delivery method b’00 = <invalid option>
b’01 = Point-multipoint (0x40)
b’10 = Directed Broadcast (0x80)
b’11 = DigiMesh (0xC0)

Example
The example shows how to send a transmission to a device if you disable escaping (AP = 1), with
destination address 0x0013A200 400A0127, and payload “TxData0A”.

Frame data fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x16

Frame type 3 0x10

Frame ID 4 0x01

64-bit destination
address

MSB 5 0x00

6 0x13

7 0xA2

8 0x00

9 0x40

10 0x0A

11 0x01

LSB 12 0x27

16-bit destination
network address

MSB 13 0xFF

LSB 14 0xFE

Broadcast radius 15 0x00

Frame descriptions Transmit Request frame - 0x10

Digi XBee3® DigiMesh 2.4 RF Module User Guide 175

Frame data fields Offset Example

Options 16 0x00

RF data 17 0x54

18 0x78

19 0x44

20 0x61

21 0x74

22 0x61

23 0x30

24 0x41

Checksum 25 0x13

If you enable escaping (AP = 2), the frame should look like:
0x7E 0x00 0x16 0x10 0x01 0x00 0x7D 0x33 0xA2 0x00 0x40 0x0A 0x01 0x27 0xFF 0xFE 0x00
0x00 0x54 0x78 0x44 0x61 0x74 0x61 0x30 0x41 0x7D 0x33

The device calculates the checksum (on all non-escaped bytes) as [0xFF - (sum of all bytes from API
frame type through data payload)].

Frame descriptions Explicit Addressing Command frame - 0x11

Digi XBee3® DigiMesh 2.4 RF Module User Guide 176

Explicit Addressing Command frame - 0x11

Description
This frame is similar to Transmit Request (0x10), but it also requires you to specify the application-
layer addressing fields: endpoints, cluster ID, and profile ID.
This frame causes the device to send payload data as an RF packet to a specific destination, using
specific source and destination endpoints, cluster ID, and profile ID. These fields ignore the ones
specified by DE,SE and CI.

n For broadcast transmissions, set the 64-bit destination address to 0x000000000000FFFF.
n For unicast transmissions, set the 64 bit address field to the address of the desired destination

node, otherwise set the 16-bit address field to the desired 16-bit destination.
n Set the reserved field to 0xFFFE.

Query the NP command to read the maximum number of payload bytes. For more information, see
Diagnostics – Firmware/Hardware Information.
You can read the maximum number of payload bytes with the NP command.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data
fields Offset Description

Frame type 3 0x11

Frame ID 4 Identifies the data frame for the host to correlate with a subsequent ACK. If
set to 0, the device does not send a response.

64-bit
destination
Address

5-12 MSB first, LSB last. Set to the 64-bit address of the destination device.
Broadcast = 0x000000000000FFFF

Reserved 13-14 Set to 0xFFFE.

Source
Endpoint

15 Source Endpoint for the transmission.

Destination
Endpoint

16 Destination Endpoint for the transmission.

Cluster ID 17-18 The Cluster ID that the host uses in the transmission.

Profile ID 19-20 The Profile ID that the host uses in the transmission.

Frame descriptions Explicit Addressing Command frame - 0x11

Digi XBee3® DigiMesh 2.4 RF Module User Guide 177

Frame data
fields Offset Description

Broadcast
Radius

21 Sets the maximum number of hops a broadcast transmission can traverse.
If set to 0, the transmission radius set to the network maximum hops value.
If the broadcast radius exceeds the value of NH then the devices use the
value of NH as the radius. Only broadcast transmissions use this parameter.

Transmission
Options

22 See the Transmit Options table below. Set all other bits to 0.

Data Payload 23-n Data that is sent to the destination device.

Transmit Options bit field
See Bit field.

Example
The following example sends a data transmission to a device with:

n 64-bit address: 0x0013A200 01238400
n Source endpoint: 0xE8
n Destination endpoint: 0xE8
n Cluster ID: 0x11
n Profile ID: 0xC105
n Payload: TxData

Frame data fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x1A

Frame type 3 0x11

Frame ID 4 0x01

Frame descriptions Explicit Addressing Command frame - 0x11

Digi XBee3® DigiMesh 2.4 RF Module User Guide 178

Frame data fields Offset Example

64-bit destination address MSB 5 0x00

6 0x13

7 0xA2

8 0x00

9 0x01

10 0x23

11 0x84

LSB12 0x00

Reserved 13 0xFF

14 0xFE

Source endpoint 15 0xE8

Destination endpoint 16 0xE8

Cluster ID 17 0x00

18 0x11

Profile ID 19 0xC1

20 0x05

Broadcast radius 21 0x00

Transmit options 22 0x00

Data payload 23 0x54

24 0x78

25 0x44

26 0x61

27 0x74

28 0x61

Checksum 29 0xA6

Frame descriptions Remote AT Command Request frame - 0x17

Digi XBee3® DigiMesh 2.4 RF Module User Guide 179

Remote AT Command Request frame - 0x17

Description
Used to query or set device parameters on a remote device. For parameter changes on the remote
device to take effect, you must apply changes, either by setting the Apply Changes options bit, or by
sending an AC command to the remote.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame
data
fields Offset Description

Frame
type

3 0x17

Frame ID 4 Identifies the data frame for the host to correlate with a subsequent ACK. If
set to 0, the device does not send a response.

64-bit
destination
address

5-12 MSB first, LSB last. Set to the 64-bit address of the destination device.

Reserved 13-14 Set to 0xFFFE.

Remote
command
options

15 0x02 = Apply changes on remote. If you do not set this, you must send the
AC command for changes to take effect.
Set all other bits to 0.

AT
command

16-17 Command name: two ASCII characters that identify the command.

Command
parameter

18-n If present, indicates the parameter value you request for a given register. If
no characters are present, it queries the register. Numeric parameter values
are given in binary format.

Example
The following example sends a remote command:

n Change the broadcast hops register on a remote device to 1 (broadcasts go to 1-hop neighbors
only).

n Apply changes so the new configuration value takes effect immediately.

In this example, the 64-bit address of the remote device is 0x0013A200 40401122.

Frame descriptions User Data Relay frame - 0x2D

Digi XBee3® DigiMesh 2.4 RF Module User Guide 180

Frame data fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x10

Frame type 3 0x17

Frame ID 4 0x01

64-bit destination address MSB 5 0x00

6 0x13

7 0xA2

8 0x00

9 0x40

10 0x40

11 0x11

LSB 12 0x22

Reserved 13 0xFF

14 0xFE

Remote command options 15 0x02 (apply changes)

AT command 16 0x42 (B)

17 0x48 (H)

Command parameter 18 0x01

Checksum 19 0xF5

User Data Relay frame - 0x2D

Description
This frame is used to send user relay data to the Serial Port or MicroPython (internal interface). This
frame is used in conjunction with User Data Relay Output - 0xAD.
For information on sending and receiving User Data Relay frames using MicroPython, see Send and
receive User Data Relay frames in the MicroPython Programming Guide.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

https://www.digi.com/resources/documentation/digidocs/90002219/#container/cont_send_receive_user_data.htm
https://www.digi.com/resources/documentation/digidocs/90002219/#container/cont_send_receive_user_data.htm

Frame descriptions User Data Relay frame - 0x2D

Digi XBee3® DigiMesh 2.4 RF Module User Guide 181

Frame data fields Offset Description

Frame type 3 0x2D User Data Relay frame

Frame ID 4 Reference identifier

Destination interface 5 0 = Serial port (SPI, or UART when in API mode)
2 = MicroPython

Data 6 Variable length user data

Error cases
The Frame ID is used to report error conditions in a method consistent with existing transmit frames.
The error codes are mapped to statuses. The following conditions result in an error that is reported in
a TX Status frame, referencing the frame ID from the 0x2D request.

n Invalid interface (0x7C): The user specified a destination interface that does not exist.
n Interface not accepting frames (0x7D): The destination interface is a valid interface, but is

not in a state that can accept data. For example, UART not in API mode or buffer queues are
full.

Example
This example frame could be used to send the message “Relay Data” to the MicroPython interface
using API mode 1 (AP = 1).

Frame data fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x0D

Frame type 3 0x2D

Frame ID 4 0x01

Destination Interface 5 0x02

Frame descriptions User Data Relay frame - 0x2D

Digi XBee3® DigiMesh 2.4 RF Module User Guide 182

Frame data fields Offset Example

Data 6 0x52

7 0x65

8 0x6C

9 0x61

10 0x79

11 0x20

12 0x44

13 0x61

14 0x74

15 0x61

Checksum 16 0x38

Frame descriptions AT Command Response frame - 0x88

Digi XBee3® DigiMesh 2.4 RF Module User Guide 183

AT Command Response frame - 0x88

Description
A device sends this frame in response to an AT Command (0x08 or 0x09) frame. Some commands send
back multiple frames; for example, the ND command.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data
fields Offset Description

Frame type 3 0x88

Frame ID 4 Identifies the data frame for the host to correlate with a subsequent ACK. If
set to 0, the device does not send a response.

AT
command

5-6 Command name: two ASCII characters that identify the command.

Command
status

7 0 = OK
1 = ERROR
2 = Invalid command
3 = Invalid parameter
4 = Tx failure

Command
data

The register data in binary format. If the host sets the register, the device
does not return this field.

Example
If you change the BD parameter on a local device with a frame ID of 0x01, and the parameter is valid,
the user receives the following response.

Frame data
fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x05

Frame type 3 0x88

Frame ID 4 0x01

Frame descriptions AT Command Response frame - 0x88

Digi XBee3® DigiMesh 2.4 RF Module User Guide 184

Frame data
fields Offset Example

AT command 5 0x42 (B)

6 0x44 (D)

Command status 7 0x00

Command data (No command data implies the parameter was set rather than
queried)

Checksum 8 0xF0

Frame descriptions Modem Status frame - 0x8A

Digi XBee3® DigiMesh 2.4 RF Module User Guide 185

Modem Status frame - 0x8A

Description
Devices send the status messages in this frame in response to specific conditions.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data
fields Offset Description

Frame type 3 0x8A

Status 4 0x00 = Hardware reset
0x01 = Watchdog timer reset
0x02 = End device successfully associated with a coordinator
0x03 = End device disassociated from coordinator or coordinator failed to
form a new network
0x06 = End device successfully associated with a coordinator
0x0B = Network woke up
0x0C = Network went to sleep
0x0D Input voltage is too high

Example
When a device powers up, it returns the following API frame.

Frame data fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 LSB 2 0x02

Frame type 3 0x8A

Status 4 0x00

Checksum 5 0x75

Frame descriptions Transmit Status frame - 0x8B

Digi XBee3® DigiMesh 2.4 RF Module User Guide 186

Transmit Status frame - 0x8B

Description
When a Transmit Request (0x10, 0x11) completes, the device sends an 0x8B Transmit Status message
out of the serial interface. This message indicates if the Transmit Request was successful or if it failed.

Note Broadcast transmissions are not acknowledged and always return a status of 0x00, even if the
delivery failed.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data
fields Offset Description

Frame type 3 0x8B

Frame ID 4 The Frame ID of the response will be the same value that was used in the
originating Tx request.

16-bit
destination
address

5 The 16-bit Network Address where the packet was delivered (if
successful). If not successful, this address is 0xFFFD (destination address
unknown).6

Transmit retry
count

7 The number of application transmission retries that occur.

Delivery
status

8 0x00 = Success
0x01 = MAC ACK Failure
0x02 = Collision avoidance failure
0x21 = Network ACK Failure
0x25 = Route not found
0x31 = Internal resource error
0x32 = Internal error
0x74 = Data payload too large
0x75 = Indirect message unrequested

Discovery
status

9 0x00 = No discovery overhead
0x02 = Route discovery

Example
In the following example, the destination device reports a successful unicast data transmission
successful and a route discovery occurred. The outgoing Transmit Request that this response frame
came from uses Frame ID of 0x47.

Frame descriptions Transmit Status frame - 0x8B

Digi XBee3® DigiMesh 2.4 RF Module User Guide 187

Frame Fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x07

Frame type 3 0x8B

Frame ID 4 0x47

Reserved 5 0xFF

6 0xFE

Transmit retry count 7 0x00

Delivery status 8 0x00

Discovery status 9 0x02

Checksum 10 0x2E

Frame descriptions Route Information Packet frame - 0x8D

Digi XBee3® DigiMesh 2.4 RF Module User Guide 188

Route Information Packet frame - 0x8D

Description
If you enable NACK or the Trace Route option on a DigiMesh unicast transmission, a device can output
this frame for the transmission.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data fields Offset Description

Frame type 3 0x8D

Source event 4 0x11 = NACK
0x12 = Trace route

Length 5 The number of bytes that follow, excluding the checksum. If the
length increases, new items have been added to the end of the list
for future revisions.

Timestamp 6-9 System timer value on the node generating the Route Information
Packet. The timestamp is in microseconds. Only use this value for
relative time measurements because the time stamp count restarts
approximately every hour.

ACK timeout count 10 The number of MAC ACK timeouts that occur.

TX blocked count 11 The number of times the transmission was blocked due to reception
in progress.

Reserved 12 Reserved, set to 0s.

Destination address 13-20 The address of the final destination node of this network-level
transmission.

Source address 21-28 Address of the source node of this network-level transmission.

Responder address 29-36 Address of the node that generates this Route Information packet
after it sends (or attempts to send) the packet to the next hop (the
Receiver node).

Successor address 37-44 Address of the next node after the responder in the route towards
the destination, whether or not the packet arrived successfully at the
successor node.

Example
The following example represents a possible Route Information Packet. A device receives the packet
when it performs a trace route on a transmission from one device (serial number 0x0013A200
4052AAAA) to another (serial number 0x0013A200 4052DDDD).

Frame descriptions Route Information Packet frame - 0x8D

Digi XBee3® DigiMesh 2.4 RF Module User Guide 189

This particular frame indicates that the network successfully forwards the transmission from one
device (serial number 0x0013A200 4052BBBB) to another device (serial number 0x0013A200
4052CCCC).

Frame data fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x2A

Frame type 3 0x8D

Source event 4 0x12

Length 5 0x27
0X2B

Timestamp MSB 6 0x9C

7 0x93

8 0x81

LSB 9 0x7F

ACK timeout count 10 0x00

TX blocked count 11 0x00

Reserved 12 0x00

Destination address MSB 13 0x00

14 0x13

15 0xA2

16 0x00

17 0x40

18 0x52

19 0xAA

LSB 20 0xAA

Frame descriptions Route Information Packet frame - 0x8D

Digi XBee3® DigiMesh 2.4 RF Module User Guide 190

Frame data fields Offset Example

Source address MSB 21 0x00

22 0x13

23 0xA2

24 0x00

25 0x40

26 0x52

27 0xDD

LSB 28 0xDD

Responder address MSB 29 0x00

30 0x13

31 0xA2

32 0x00

33 0x40

34 0x52

35 0xBB

LSB 36 0xBB

Successor address MSB 37 0x00

38 0x13

39 0xA2

40 0x00

41 0x40

42 0x52

43 0xCC

LSB 44 0xCC

Checksum 45 0xD2

Frame descriptions Aggregate Addressing Update frame - 0x8E

Digi XBee3® DigiMesh 2.4 RF Module User Guide 191

Aggregate Addressing Update frame - 0x8E

Description
The device sends out an Aggregate Addressing Update frame on the serial interface of an API-enabled
node when an address update frame (generated by the AG command being issued on a node in the
network) causes the node to update its DH and DL registers.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame
data
fields Offset Description

Frame
type

3 0x8E

Format
ID

4 Byte reserved to indicate the format of additional packet information which may
be added in future firmware revisions. In the current firmware revision, this field
returns 0x00.

New
address

5-12 Address to which DH and DL are being set.

Old
address

13-20 Address to which DH and DL were previously set.

Example
In the following example, a device with destination address (DH/DL) of 0x0013A200 4052AAAA updates
its destination address to 0x0013A200 4052BBBB.

Frame data fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x12

Frame type 3 0x8E

Format ID 4 0x00

Frame descriptions Aggregate Addressing Update frame - 0x8E

Digi XBee3® DigiMesh 2.4 RF Module User Guide 192

Frame data fields Offset Example

New address MSB 5 0x00

6 0x13

7 0xA2

8 0x00

9 0x40

10 0x52

11 0xBB

LSB 12 0xBB

Old address 13 0x00

14 0x13

15 0xA2

16 0x00

17 0x40

18 0x52

19 0xAA

20 0xAA

Checksum 21 0x19

Frame descriptions Receive Packet frame - 0x90

Digi XBee3® DigiMesh 2.4 RF Module User Guide 193

Receive Packet frame - 0x90

Description
When a device configured with a standard API Rx Indicator (AO (API Options) = 0) receives an RF data
packet, it sends it out the serial interface using this message type.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data fields Offset Description

Frame type 3 0x90

64-bit source address 4-11 The sender's 64-bit address. MSB first, LSB last.

Reserved 12-13 16-bit source address.

Receive options 14 Bit Interpretation

0 Packet acknowledged

1 Broadcast packet

2 - 5 Reserved

6 - 7 Delivery mode:

b 00 Invalid

b 01 Point-to-multipoint

b 10 Repeater mode

b 11 DigiMesh

Received data 15 - n The RF data the device receives.

Example
In the following example, a device with a 64-bit address of 0x0013A200 40522BAA sends a unicast
data transmission to a remote device with payload RxData. If AO = 0 on the receiving device, it sends
the following frame out its serial interface.

Frame data fields Offset Example

Start delimiter 0 0x7E

Frame descriptions Receive Packet frame - 0x90

Digi XBee3® DigiMesh 2.4 RF Module User Guide 194

Frame data fields Offset Example

Length MSB 1 0x00

LSB 2 0x12

Frame type 3 0x90

64-bit source address
MSB 4 0x00

5 0x13

6 0xA2

7 0x00

8 0x40

9 0x52

10 0x2B

LSB 11 0xAA

Reserved 12 0xFF

13 0xFE

Receive options 14 0x01

Received data 15 0x52

16 0x78

17 0x44

18 0x61

19 0x74

20 0x61

Checksum 21 0x11

Frame descriptions Explicit Rx Indicator frame - 0x91

Digi XBee3® DigiMesh 2.4 RF Module User Guide 195

Explicit Rx Indicator frame - 0x91

Description
When a device configured with explicit API Rx Indicator (AO (API Options) = 1) receives an RF packet, it
sends it out the serial interface using this message type.

Note The values of the fields in the 0x91 frame (for example, endpoints and cluster ID) depend on the
values sent by the initiator. If the initiator sends a Transmit Request frame - 0x10 (which does not
specify endpoints and cluster IDs), then the initiator sends the values configured in DE command, SE
command, and CI (Cluster ID) instead.

The Cluster ID and endpoints must be used to identify the type of transaction that occurred.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data fields Offset Description

Frame type 3 0x91

64-bit source address 4-11 MSB first, LSB last. The sender's 64-bit address.

Reserved 12-13 16-bit source address.

Source endpoint 14 Endpoint of the source that initiates transmission.

Destination endpoint 15 Endpoint of the destination where the message is addressed.

Cluster ID 16-17 The Cluster ID where the frame is addressed.

Profile ID 18-19 The Profile ID where the fame is addressed.

Receive options 20 Bit field:
0x00 = Packet acknowledged
0x01 = Packet was a broadcast packet
0x06, 0x07:

b’01 = Point-Multipoint
b’10 = Repeater mode (directed broadcast)
b’11 = DigiMesh

Ignore all other bits.

Received data 21-n Received RF data.

Example
In the following example, a device with a 64-bit address of 0x0013A200 40522BAA sends a broadcast
data transmission to a remote device with payload RxData.
If a device sends the transmission:

Frame descriptions Explicit Rx Indicator frame - 0x91

Digi XBee3® DigiMesh 2.4 RF Module User Guide 196

n With source and destination endpoints of 0xE0
n Cluster ID = 0x2211
n Profile ID = 0xC105

If AO = 1 on the receiving device, it sends the following frame out its serial interface.

Frame data fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x18

Frame type 3 0x91

64-bit source address MSB 4 0x00

5 0x13

6 0xA2

7 0x00

8 0x40

9 0x52

10 0x2B

LSB 11 0xAA

Reserved 12 0xFF

13 0xFE

Source endpoint 14 0xE0

Destination endpoint 15 0xE0

Cluster ID 16 0x22

17 0x11

Profile ID 18 0xC1

19 0x05

Receive options 20 0x02

Frame descriptions Explicit Rx Indicator frame - 0x91

Digi XBee3® DigiMesh 2.4 RF Module User Guide 197

Frame data fields Offset Example

Received data 21 0x52

22 0x78

23 0x44

24 0x61

25 0x74

26 0x61

Checksum 27 0x68

Frame descriptions I/O Data Sample Rx Indicator frame - 0x92

Digi XBee3® DigiMesh 2.4 RF Module User Guide 198

I/O Data Sample Rx Indicator frame - 0x92

Description
When you enable periodic I/O sampling or digital I/O change detection on a remote device, the UART
of the device that receives the sample data sends this frame out.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data fields Offset Description

Frame type 3 0x92

64-bit source
address

4-11 The sender's 64-bit address.

Reserved 12-13 Reserved.

Receive options 14 Bit field:
0x01 = Packet acknowledged
0x02 = Packet is a broadcast packet
Ignore all other bits

Number of samples 15 The number of sample sets included in the payload. Always set to 1.

Digital channel
mask

16-17 Bitmask field that indicates which digital I/O lines on the remote have
sampling enabled, if any.

Analog channel
mask

18 Bitmask field that indicates which analog I/O lines on the remote
have sampling enabled, if any.

Digital samples (if
included)

19-20 If the sample set includes any digital I/O lines (Digital channel mask >
0), these two bytes contain samples for all enabled digital I/O lines.
DIO lines that do not have sampling enabled return 0. Bits in these
two bytes map the same as they do in the Digital channel mask field.

Analog sample 21-n If the sample set includes any analog I/O lines (Analog channel mask >
0), each enabled analog input returns a 2-byte value indicating the A/D
measurement of that input. Analog samples are ordered sequentially
from ADO/DIO0 to AD3/DIO3.

Example
In the following example, the device receives an I/O sample from a device with a 64-bit serial number
of 0x0013A20040522BAA.
The configuration of the transmitting device takes a digital sample of a number of digital I/O lines and
an analog sample of AD1. It reads the digital lines to be 0x0014 and the analog sample value is 0x0225.
The complete example frame is:
7E00 1492 0013 A200 4052 2BAA FFFE 0101 001C 0200 1402 25F9

Frame descriptions I/O Data Sample Rx Indicator frame - 0x92

Digi XBee3® DigiMesh 2.4 RF Module User Guide 199

Frame fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x14

64-bit source address MSB 4 0x00

5 0x13

6 0xA2

7 0x00

8 0x40

9 0x52

10 0x2B

LSB 11 0xAA

Reserved MSB 12 0xFF

LSB 13 0xFE

Receive options 14 0x01

Number of samples 15 0x01

Digital channel mask 16 0x00

17 0x1C

Analog channel mask 18 0x02

Digital samples (if included) 19 0x00

20 0x14

Analog sample 21 0x02

22 0x25

Checksum 23 0xF5

Frame descriptions Node Identification Indicator frame - 0x95

Digi XBee3® DigiMesh 2.4 RF Module User Guide 200

Node Identification Indicator frame - 0x95

Description
A device receives this frame when:

n it transmits a node identification message to identify itself
n AO = 0. If AO = 1, then the node identification indicator is produced as a Explicit Rx Indicator

frame - 0x91.

The data portion of this frame is similar to a network discovery response. For more information, see
ND (Network Discover).

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data
fields Offset Description

Frame type 3 0x95

64-bit source
address

4-11 MSB first, LSB last. The sender's 64-bit address.

Reserved 12-13 Reserved

Receive
options

14 Bit Interpretation

0 Packet acknowledged

1 Broadcast packet

2 - 5 Reserved

6 - 7 Delivery mode:

b 00 Invalid

b 01 Point-to-multipoint

b 10 Repeater mode

b 11 DigiMesh

Reserved 15-16 Reserved

64-bit remote
address

17-24 Indicates the 64-bit address of the remote device that transmitted the
Node Identification Indicator frame.

Frame descriptions Node Identification Indicator frame - 0x95

Digi XBee3® DigiMesh 2.4 RF Module User Guide 201

Frame data
fields Offset Description

NI string 25-26 Node identifier string on the remote device. The NI string is terminated
with a NULL byte (0x00).

Reserved 27-28 Reserved

Device type 29 0 = Coordinator
1 = Normal Mode
2 = End Device
For more options, see NO (Network Discovery Options)

Source event 30 1 = Frame sent by node identification pushbutton event - see D0
(DIO0/ADC0/Commissioning Configuration)

Digi Profile ID 31-32 Set to the Digi application profile ID

Digi
Manufacturer
ID

33-34 Set to the Digi Manufacturer ID

Digi DD value
(optional)

35-38 Reports the DD value of the responding device. Use the NO command to
enable this field.

RSSI (optional) 39 Received signal strength indicator. Use the NO command to enable this
field.

Example
If you press the commissioning pushbutton on a remote device with 64-bit address
0x0013A200407402AC and a default NI string sends a Node Identification, all devices on the network
receive the following node identification indicator:

Frame data fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x25

Frame type 3 0x95

Frame descriptions Node Identification Indicator frame - 0x95

Digi XBee3® DigiMesh 2.4 RF Module User Guide 202

Frame data fields Offset Example

64-bit source address MSB 4 0x00

5 0x13

6 0xA2

7 0x00

8 0x40

9 0x74

10 0x02

LSB 11 0xAC

Reserved 12 0xFF

13 0xFE

Receive options 14 0xC2

Reserved 15 0xFF

16 0xFE

64-bit remote address MSB 17 0x00

18 0x13

19 0xA2

20 0x00

21 0x40

22 0x74

23 0x02

LSB 24 0xAC

NI string 25 0x20

26 0x00

Reserved 27 0xFF

28 0xFE

Device type 29 0x01

Source event 30 0x01

Digi Profile ID 31 0xC1

32 0x05

Frame descriptions Node Identification Indicator frame - 0x95

Digi XBee3® DigiMesh 2.4 RF Module User Guide 203

Frame data fields Offset Example

Digi Manufacturer ID 33 0x10

34 0x1E

Digi DD value
(optional)

35 0x00

36 0x0C

37 0x00

38 0x00

RSSI (optional) 39 0x2E

Checksum 40 0x33

Frame descriptions Remote Command Response frame - 0x97

Digi XBee3® DigiMesh 2.4 RF Module User Guide 204

Remote Command Response frame - 0x97

Description
If a device receives this frame in response to a Remote Command Request (0x17) frame, the device
sends an AT Command Response (0x97) frame out the serial interface.
Some commands, such as the ND command, may send back multiple frames.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Frame data fields Offset Description

Frame type 3 0x97

Frame ID 4 This is the same value that is passed into the request.

64-bit source (remote) address 5-12 The address of the remote device returning this response.

Reserved 13-14 Reserved.

AT commands 15-16 The name of the command.

Command status 17 0 = OK
1 = ERROR
2 = Invalid Command
3 = Invalid Parameter

Command data 18-n The value of the requested register.

Example
If a device sends a remote command to a remote device with 64-bit address 0x0013A200 40522BAA to
query the SL command, and if the frame ID = 0x55, the response would look like the following
example.

Frame data fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x13

Frame type 3 0x97

Frame ID 4 0x55

Frame descriptions User Data Relay Output - 0xAD

Digi XBee3® DigiMesh 2.4 RF Module User Guide 205

Frame data fields Offset Example

64-bit source (remote) address MSB 5 0x00

6 0x13

7 0xA2

8 0x00

9 0x40

10 0x52

11 0x2B

LSB 12 0xAA

Reserved 13 0xFF

14 0xFE

AT commands 15 0x53 (S)

16 0x4C (L)

Command status 17 0x00

Command data 18 0x40

19 0x52

20 0x2B

21 0xAA

Checksum 22 0xF4

User Data Relay Output - 0xAD

Description
This frame is emitted when user relay data is received from MicroPython (internal interface) or the
Serial Port. This frame is used in conjunction with User Data Relay frame - 0x2D.
For information on sending and receiving User Data Relay Frames using MicroPython, see Send and
receive User Data Relay frames in the MicroPython Programming Guide.

Format
The following table provides the contents of the frame. For details on frame structure, see API frame
format.

Field data fields Offset Description

Frame type 3 0xAD User data relay output frame.

https://www.digi.com/resources/documentation/digidocs/90002219/#container/cont_send_receive_user_data.htm
https://www.digi.com/resources/documentation/digidocs/90002219/#container/cont_send_receive_user_data.htm

Frame descriptions User Data Relay Output - 0xAD

Digi XBee3® DigiMesh 2.4 RF Module User Guide 206

Field data fields Offset Description

Source interface 4 0 = Serial port (SPI, or UART when in API mode)
2 = MicroPython

Data 5 Variable length user data.

Example
This example frame would be received if a message of “Relay Data” was sent from MicroPython to the
serial port interface.

Frame data fields Offset Example

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x0C

Frame type 3 0xAD

Source Interface 4 0x02

Data 5 0x52

6 0x65

7 0x6C

8 0x61

9 0x79

10 0x20

11 0x44

12 0x61

13 0x74

14 0x61

Checksum 15 0xB9

Over-the-air firmware/file system upgrade process
for DigiMesh 2.4

OTA upgrade image file formats 208
Storage 210
ZCL OTAmessaging 210
ZCLmessage output 211
Image Notify 211
Create the Image Notify request 212
Query Next Image request 214
Query Next Image response 216
Image Block request 218
Image Block response 220
Upgrade End request 223
Upgrade End response 225
OTA error handling 227

Digi XBee3® DigiMesh 2.4 RF Module User Guide 207

Over-the-air firmware/file system upgrade process for DigiMesh 2.4 OTA upgrade image file formats

Digi XBee3® DigiMesh 2.4 RF Module User Guide 208

OTA upgrade image file formats

OTA/OTB file
The .ota file extension represents a file which contains an OTA firmware upgrade image. The .otb file
extension represents a file which contains an OTA combined upgrade image containing both the
bootloader and the firmware. However, the way the XBee3 DigiMesh RF Module processes both the
files remain the same.

fs.ota file
The .fs.ota file extension represents an over-the-air MicroPython file system upgrade image. The
XBee3 DigiMesh RF Module processes these files differently as compared to OTA/OTB files.
The over-the-air file system upgrade process is explained in detail in OTA file system upgrades.

The OTA header
The OTA firmware uses a specific firmware file with a .ota extension. We recommend parsing the OTA
header from the OTA file first to obtain the firmware version, manufacturer code, image type and the
size of the GBL file. These parameters are required to generate the rest of the OTA firmware upgrade
messages.

Note All fields in the OTA header with the exception of the OTA Header String are in little-endian
format.

The format of the OTA header is:

Bytes Field name Description

4 OTA upgrade
file identifier

Has to match 0x0BEEF11E in little endian. If it is not, then the OTA file is not
a valid upgrade file.

2 OTA Header
version

0x0001

2 OTA Header
length

Length of the OTA Header including any optional fields used.

2 OTA Header
Field control

Bit mask that indicates if additional information is included in the image. See
the last three fields in this table.

2 Manufacturer
Code

0x101E

2 Image Type 0x0000 for a firmware upgrade, or 0x0100 for a file system update.

4 File Version For firmware upgrades, the version of the upgrade. For file system
upgrades, the firmware version used to create the image.

2 Stack Version This is set to 2 by default.

32 OTA Header
String

An ascii string that can contain a human-readable description of the file.

Over-the-air firmware/file system upgrade process for DigiMesh 2.4 OTA upgrade image file formats

Digi XBee3® DigiMesh 2.4 RF Module User Guide 209

Bytes Field name Description

4 Image Size The number of bytes that will be transferred over the air. This is usually the
size of the image contained in the file.

0/1 Security
Credential
version

Included if bit 0 of OTA Header Field Control is set. This indicates the security
credential version type that the client is required to have, before it will
install the image (set to 2).

0/8 Upgrade File
Destination

Included if bit 1 of OTA Header Field Control is set. This indicates that this
OTA file contains security credential/certificate 577 data or other type of
information that is specific to a particular device. Currently, we do not use
this feature.

0/2 Minimum
Hardware
Version

Included if bit 2 of OTA Header Field Control is set. This is the minimum
hardware version that can use this file.

0/2 Maximum
Hardware
Version

Included if bit 2 of OTA Header Field Control is set. This is the maximum
hardware version that can use this file. Currently, we do not use this feature.

For OTA firmware update images, the file version field contains additional hardware/software
compatibility information. We recommend that if you intend to perform an OTA update, you use the
OTA header extracted from the file so that you can avoid undesired behavior.

Hardware/software compatibility
The Hardware Software Compatibility number ensures that an incompatible firmware is not flashed
on to the XBee3 DigiMesh RF Module. To obtain this value, query %C (Hardware/Software
Compatibility) on the target device. You can successfully update the device to a firmware if, and only if,
the value in the Minimum Hardware Version field of the OTA header is equal to or less than the value
obtained by querying %C on the device.

Sub-elements and tags
All data after the OTA header is organized into sub-elements. Most OTA files will contain a single sub-
element: the upgrade image. Sub-elements are arranged as tag-length-value sets, as shown in the
table below.

Bytes Field name Description

2 Sub-
element
Tag

The tag for the sub-element, in little-endian format. This is usually 0x0000 for
'upgrade image' (this is the case for both firmware upgrades and file system
updates).

4 Sub-
element
length

The length of the sub-element data (n) in little-endian format.

n Sub-
element
data

The data to be transferred.

Over-the-air firmware/file system upgrade process for DigiMesh 2.4 Storage

Digi XBee3® DigiMesh 2.4 RF Module User Guide 210

Parse the image blocks
To parse the image blocks:

1. Divide the contents of the OTA payload into 48 byte blocks for encrypted networks and 56 byte
blocks for unencrypted networks

2. Create Image Block Requests around the image blocks; see Image Block request.

Note The payload data starts after the OTA header and the first sub-element tag/length. The offset of
the payload data can be found by taking the OTA header length from the OTA header and adding 6 for
the sub-element tag and length.

Storage
The OTA firmware image blocks are received and stored in a separate internal flash slot that is
allotted exclusively for this purpose. Once all the image bytes are written to the slot, the new image
must be validated by the current application before it can be used.
If the new image is deemed invalid, the running DigiMesh firmware rejects the image and continues
operating with the current, valid application.

ZCL OTA messaging
The following figure provides the messaging sequence between the Server (updater node) and the
Client (target node).

Over-the-air firmware/file system upgrade process for DigiMesh 2.4 ZCL message output

Digi XBee3® DigiMesh 2.4 RF Module User Guide 211

ZCL message output
By default ZCLmessages are not printed to the UART on the client. To see these messages, set AZ
(Extended API Options) to 2. ZCLmessages received by the server are always printed to the UART.

Image Notify
The server sends the Image Notify message to the client informing the device of the presence of an
update image. The Image Notify message is sent when the upgrade process is initiated from the
server.

Over-the-air firmware/file system upgrade process for DigiMesh 2.4 Create the Image Notify request

Digi XBee3® DigiMesh 2.4 RF Module User Guide 212

Create the Image Notify request
The Image Notify Request is an explicit transmit frame (0x11 type) passed into the server with the
following information:

Frame data fields Offset Example Comments

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x21

Frame Type 3 0x11

Frame ID 4 0x01

64-bit destination address MSB 5 0x00

6 0x13

7 0xA2

8 0xFE

9 0x00

10 0x00

11 0x00

LSB
12

0x03

16-bit destination address MSB
13

0x28

LSB
14

0x2F

Source Endpoint 15 0xE8

Destination Endpoint 16 0xE8

Cluster ID MSB
17

0x00

LSB
18

0x19

Profile ID MSB
19

0xC1

LSB
20

0x05

Broadcast radius 21 0x00

Transmit options 22 0x00

Over-the-air firmware/file system upgrade process for DigiMesh 2.4 Create the Image Notify request

Digi XBee3® DigiMesh 2.4 RF Module User Guide 213

Frame data fields Offset Example Comments

Data
payload

ZCL
frame
header

Frame
control

23 0x09

Transaction
sequence
number

24 0x01

ZCL
payload

Command ID 25 0x00 Image Notify Command ID

Payload type 26 0x03 Contains Jitter, Image Type, Firmware
Version

Query jitter 27 0x00

Manufacturer
ID

LSB
28

0x1E Digi's Manufacturer ID in little-endian

MSB
29

0x10

Image type LSB
30

0x00 0x0000 - OTA/OTB file
0x0100 - OTA file system image

MSB
31

0x00

Firmware
version

LSB
32

0x01 Firmware version of the update file. This
should be the version parsed out of the OTA
header, in little-endian format.

33 0x10

34 0x00

MSB
35

0x00

Checksum 36 0xE5

Over-the-air firmware/file system upgrade process for DigiMesh 2.4 Query Next Image request

Digi XBee3® DigiMesh 2.4 RF Module User Guide 214

Query Next Image request
The client device sends the Query Next Image request message to the server to indicate it is ready to
receive a firmware image and is sent as a response to an Image Notify message. The client sends
information about the existing firmware version as a part of this message. The server emits the
following frame after receiving the request from the client:

Frame data fields Offset Example Comments

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x1E

Frame Type 3 0x91

64-bit source address MSB 4 0x00

5 0x13

6 0xA2

7 0xFE

8 0x00

9 0x00

10 0x00

LSB
11

0x03

16-bit source address MSB
12

0x28

LSB
13

0x2F

Source Endpoint 14 0xE8

Destination Endpoint 15 0xE8

Cluster ID MSB
16

0x00

LSB
17

0x19

Profile ID MSB
18

0xC1

LSB
19

0x05

Receive options 20 0x01

Over-the-air firmware/file system upgrade process for DigiMesh 2.4 Query Next Image request

Digi XBee3® DigiMesh 2.4 RF Module User Guide 215

Frame data fields Offset Example Comments

Data
payload

ZCL frame
header

Frame control 21 0x01

Transaction sequence
number

22 0x00

ZCL payload Command ID 23 0x01 Query Next Image
request

Field control 24 0x00

Manufacturer ID LSB
25

0x1E

MSB
26

0x10

Image type LSB
27

0x00

MSB
28

0x00

Firmware version LSB
29

0x00

30 0x10

31 0x00

MSB
32

0x00

Checksum 33 0x71

Over-the-air firmware/file system upgrade process for DigiMesh 2.4 Query Next Image response

Digi XBee3® DigiMesh 2.4 RF Module User Guide 216

Query Next Image response
The server obtains the information sent by the Client in the Query Next Image request and
determines if it has a suitable image for the client. It then sends a Query Next Image response with
one of the following status messages as appropriate:

n 0x00 - SUCCESS: The server is authorized to upgrade the client with the image.
n 0x98 - NO_IMAGE_AVAILABLE: The server is authorized to update the client but does not have a

new OTA update image available.
n 0x7E - NOT_AUTHORIZED: The server is not authorized to update the client.

Frame data fields Offset Example Comments

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x24

Frame Type 3 0x11

Frame ID 4 0x01

64-bit destination address MSB 5 0x00

6 0x13

7 0xA2

8 0xFE

9 0x00

10 0x00

11 0x00

LSB
12

0x03

16-bit destination address MSB
13

0x28

LSB
14

0x2F

Source Endpoint 15 0xE8

Destination Endpoint 16 0xE8

Cluster ID MSB
17

0x00

LSB
18

0x19

Over-the-air firmware/file system upgrade process for DigiMesh 2.4 Query Next Image response

Digi XBee3® DigiMesh 2.4 RF Module User Guide 217

Frame data fields Offset Example Comments

Profile ID MSB
19

0xC1

LSB
20

0x05

Broadcast radius 21 0x00

Transmit options 22 0x00

Data
payload

ZCL
frame
header

Frame control 23 0x09

Transaction
sequence
number

24 0x01

ZCL
payload

Command ID 25 0x02 Query Next Image Response

Status 26 0x00 Success = 0x00
No Image Available = 0x98
Not Authorized = 0x7E

Manufacturer
ID

LSB
27

0x1E

MSB
28

0x10

Image type LSB
29

0x00 0x0000 - OTA/OTB file
0x0100 - OTA file system image

MSB
30

0x00

Firmware
version

LSB
31

0x01

32 0x10

33 0x00

MSB
34

0x00

Image Size LSB
35

0x2E This is the total number of bytes that will
be transferred - it is usually the size of the
image.36 0xF3

37 0x02

MSB
38

0x00

Checksum 39 0xE5

Over-the-air firmware/file system upgrade process for DigiMesh 2.4 Image Block request

Digi XBee3® DigiMesh 2.4 RF Module User Guide 218

Image Block request
The Client generates Image Block requests to request the server for bytes of the OTA firmware
image. Each image block is 64 byte long. The client also sends the file offset as a way to keep the
synchronization of every block intact.
The Image Block requests are repeated by the client until all the blocks of the image are successfully
obtained. The size of the OTA upgrade image is usually obtained by the client in the Query Next Image
response message and hence it knows the exact number of Image Block requests it needs to send.

Frame data fields Offset Example Comments

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x1E

Frame Type 3 0x91

64-bit source address MSB 4 0x00

5 0x13

6 0xA2

7 0xFE

8 0x00

9 0x00

10 0x00

LSB
11

0x03

16-bit source address MSB
12

0x28

LSB
13

0x2F

Source Endpoint 14 0xE8

Destination Endpoint 15 0xE8

Cluster ID MSB
16

0x00

LSB
17

0x19

Over-the-air firmware/file system upgrade process for DigiMesh 2.4 Image Block request

Digi XBee3® DigiMesh 2.4 RF Module User Guide 219

Frame data fields Offset Example Comments

Profile ID MSB
18

0xC1

LSB
19

0x05

Receive options 20 0x01

Data
payload

ZCL
frame
header

Frame
control

21 0x01

Transaction
sequence
number

22 0x01

ZCL
payload

Command ID 23 0x03 Image Block Request

Field control 24 0x00

Manufacturer
ID

LSB
25

0x1E

MSB
26

0x10

Image type LSB
27

0x00 0x0000 - OTA/OTB file
0x0100 - OTA file system image

MSB
28

0x00

Firmware
version

LSB
29

0x01

30 0x10

31 0x00

MSB
32

0x00

File Offset LSB
33

0x00 0x0 for the first request.
Offset by multiples of Image Block size. For
example, 0x00000000 for the first request,
0x00000040, 0x00000080 and so on.34 0x00

35 0x00

LSB
36

0x00

Image Block
Size

37 0x40 0x30 for encrypted networks
0x38 for unencrypted networks

Checksum 38 0x2D

Over-the-air firmware/file system upgrade process for DigiMesh 2.4 Image Block response

Digi XBee3® DigiMesh 2.4 RF Module User Guide 220

Image Block response
The server generates an Image Block response upon receiving an Image Block request command. It
responds with a SUCCESS status on being able to retrieve the data for the client. The server uses the
file offset sent by the client to determine the location of the requested data within the OTA upgrade
image.
If you wish to cancel the update process, send an ABORT (0x95) status.

Frame data fields Offset Example Comments

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x65

Frame Type 3 0x11

Frame ID 4 0x01

64-bit destination address MSB 5 0x00

6 0x13

7 0xA2

8 0xFE

9 0x00

10 0x00

11 0x00

LSB
12

0x03

16-bit destination address MSB
13

0x28

LSB
14

0x2F

Source Endpoint 15 0xE8

Destination Endpoint 16 0xE8

Cluster ID MSB
17

0x00

LSB
18

0x19

Over-the-air firmware/file system upgrade process for DigiMesh 2.4 Image Block response

Digi XBee3® DigiMesh 2.4 RF Module User Guide 221

Frame data fields Offset Example Comments

Profile ID MSB
19

0xC1

LSB
20

0x05

Broadcast radius 21 0x00

Transmit options 22 0x00

Data
payload

ZCL frame
header

Frame control 23 0x09

Data
payload

Transaction
sequence number

24 0x02

Data
payload

ZCL
payload

Command ID 25 0x05 Image Block Response

Data
payload

ZCL
payload

Status 26 0x00 Success = 0x00
Abort = 0x95

Data
payload

ZCL
payload

Manufacturer ID LSB
27

0x1E

Data
payload

ZCL
payload

MSB
28

0x10

Data
payload

ZCL
payload

Image type LSB
29

0x00 0x0000 - OTA/OTB file
0x0100 - OTA file system image

Data
payload

ZCL
payload

MSB
30

0x00

Data
payload

ZCL
payload

Firmware version LSB
31

0x01

Data
payload

ZCL
payload

32 0x10

Data
payload

ZCL
payload

33 0x00

Data
payload

ZCL
payload

MSB
34

0x00

Over-the-air firmware/file system upgrade process for DigiMesh 2.4 Image Block response

Digi XBee3® DigiMesh 2.4 RF Module User Guide 222

Frame data fields Offset Example Comments

Data
payload

ZCL
payload

File Offset LSB
35

0x00

Data
payload

ZCL
payload

36 0x00

Data
payload

ZCL
payload

37 0x00

Data
payload

ZCL
payload

MSB
38

0x00

Data
payload

ZCL
payload

Image Block Size 39 0x40 64 byte blocks
48 byte blocks for encrypted
networks
56 byte blocks for unencrypted
networks

Data
payload

ZCL
payload

Image Block Data 40-
104

0xEB-
0x00

An image block of the size
mentioned in Image Block Size

Checksum 106 0x4E

Over-the-air firmware/file system upgrade process for DigiMesh 2.4 Upgrade End request

Digi XBee3® DigiMesh 2.4 RF Module User Guide 223

Upgrade End request
The Upgrade End request is generated by the client after it verifies the received firmware image to
ensure its integrity and validity. If the image fails any integrity checks, the client sends an Upgrade
End request command to the upgrade server with INVALID_IMAGE as the status. If the image passes
all integrity checks, the client sends an Upgrade End request command to the upgrade server with
SUCCESS as the status.

Frame data fields Offset Example Comments

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x1E

Frame Type 3 0x91

64-bit source address MSB 4 0x00

5 0x13

6 0xA2

7 0xFE

8 0x00

9 0x00

10 0x00

LSB
11

0x03

16-bit source address MSB
12

0x28

LSB
13

0x2F

Source Endpoint 14 0xE8

Destination Endpoint 15 0xE8

Cluster ID MSB
16

0x00

LSB
17

0x19

Profile ID MSB
18

0xC1

LSB
19

0x05

Over-the-air firmware/file system upgrade process for DigiMesh 2.4 Upgrade End request

Digi XBee3® DigiMesh 2.4 RF Module User Guide 224

Frame data fields Offset Example Comments

Receive options 20 0x01

Data
payload

ZCL frame
header

Frame control 21 0x01

Transaction sequence
number

22 0x30

ZCL payload Command ID 23 0x06 Upgrade End Request

Status 24 0x00 Success = 0x00
Invalid Image = 0x96
Abort = 0x95
Require More Image =
0x99

Manufacturer ID LSB
25

0x1E

MSB
26

0x10

Image type LSB
27

0x00 0x0000 - OTA/OTB file
0x0100 - OTA file system
image

MSB
28

0x00

Firmware version LSB
29

0x01

30 0x10

31 0x00

MSB
32

0x00

Checksum 38 0x3B

Over-the-air firmware/file system upgrade process for DigiMesh 2.4 Upgrade End response

Digi XBee3® DigiMesh 2.4 RF Module User Guide 225

Upgrade End response
If the server receives an Upgrade End request with a SUCCESS status, it generates an Upgrade End
response along with the time at which the device should upgrade to the new image.

Frame data fields Offset Example Comments

Start delimiter 0 0x7E

Length MSB 1 0x00

LSB 2 0x24

Frame Type 3 0x11

Frame ID 4 0x01

64-bit destination address MSB 5 0x00

6 0x13

7 0xA2

8 0xFE

9 0x00

10 0x00

11 0x00

LSB
12

0x03

16-bit destination address MSB
13

0x28

LSB
14

0x2F

Source Endpoint 15 0xE8

Destination Endpoint 16 0xE8

Cluster ID MSB
17

0x00

LSB
18

0x19

Profile ID MSB
19

0xC1

LSB
20

0x05

Broadcast radius 21 0x00

Over-the-air firmware/file system upgrade process for DigiMesh 2.4 Upgrade End response

Digi XBee3® DigiMesh 2.4 RF Module User Guide 226

Frame data fields Offset Example Comments

Transmit options 22 0x00

Data
payload

ZCL
frame
header

Frame control 23 0x09

Transaction
sequence
number

24 0x01

ZCL
payload

Command ID 25 0x07 Upgrade End response

Manufacturer
ID

LSB
26

0x1E

MSB
27

0x10

Image type LSB
28

0x00 0x0000 - OTA/OTB file
0x0100 - OTA file system image

MSB
29

0x00

Firmware
version

LSB
30

0x01

31 0x10

32 0x00

MSB
33

0x00

Current Time LSB
34

0xF0 32 bit unsigned integer Seconds since Epoch
(currently unused)

35 0x1A

36 0x53

MSB
37

0x21

Upgrade Time LSB38 0x00 This field is not currently supported—it will
be ignored by the device and the device will
upgrade immediately.39 0x1B

40 0x53

MSB
41

0x21

Checksum 38 0xE5

Over-the-air firmware/file system upgrade process for DigiMesh 2.4 OTA error handling

Digi XBee3® DigiMesh 2.4 RF Module User Guide 227

OTA error handling

ZCL OTA status code Value Description

SUCCESS 0x00 Successful operation

ABORT 0x95 Failed when client or server decides to abort the upgrade process

NOT_AUTHORIZED 0x7E Server is not authorized to upgrade the client

INVALID_IMAGE 0x96 Invalid OTA upgrade image. For example, the image failed
signature validation or CRC.

WAIT_FOR_DATA 0x97 Server does not have data block available yet

NO_IMAGE_AVAILABLE 0x98 No OTA upgrade image available for a particular client

MALFORMED_
COMMAND

0x80 The command received is badly formatted or has incorrect
parameters

UNSUP_CLUSTER_
COMMAND

0x81 Such command is not supported on the device

REQUIRE_MORE_
IMAGE

0x99 The client still requires more OTA upgrade image files in order to
successfully upgrade

Default response commands
The OTA framework has a command ID 0xB reserved for error messages that are sent by the target
device. Default response commands are transmitted by the target device by wrapping the ZCL
payload in a Explicit Addressing Command frame - 0x11. The table below shows the ZCL Payload
contents.

Note This is an example for a default response that has been received by an OTA source device. You
can see that it is an Explicit Rx Indicator frame - 0x91.

Start Delimiter 8 7E

Length 16 00 17

Frame Type 8 91

Source Address 64 FF FF FF FF FF FF FF FF

Source Address 16 FF FF

Source Endpoint 8 E8

Destination Endpoint 8 E8

Cluster ID 16 00 19

Profile ID 16 C1 05

Over-the-air firmware/file system upgrade process for DigiMesh 2.4 OTA error handling

Digi XBee3® DigiMesh 2.4 RF Module User Guide 228

Receive Options 8 C1

RF Data (ZCL payload. Hex In Little Endian) Frame Control 00

Sequence Number 00

Command ID 0B

Erring Command 02

Status 8A

Checksum F2

The example above reports an error on the Query Next Image Response(Erring Command: 0x02)
command informing the server that there is an attempt to update to the same firmware version as
the one that is running on the target radio (Status : 0x8A).
The following table explains the different error statuses which occur at different stages in the OTA
upgrade process.

Command
ID

ZCL OTA
command Status XCTU message

0x0B
Default
Response

0x02
Query Next
Image
Response

0x80 Incorrect Query Next Image Response Format

0x85 Attempting to upgrade to invalid firmware (Bad Image Type,
Wrong Mfg ID, Wrong HW/SW compatibility(%C))

0x89 Image size is too big

0x8A Please ensure that the image you are attempting to
upgrade has a different version than the current version

0x01 ZCL OTA Message Out of Sequence

0x05
Image Block
Response

0x80 Incorrect Image Block Response Format

0x01 ZCL OTA Message Out of Sequence

0x87 Upgrade File Mismatch

0x08
Upgrade End
Response

0X87 Wrong Upgrade File

When the source device or the server receives a default response frame with a command ID of 0x0B
and the erring command is 0x02 that is, the Query Next Image Response, it means there is
something wrong with the Query Next Image Response sent by the server. Similarly, if the erring
command is 0x05 that is, the Image Block Response, it means there is something wrong with the
Image Block Response sent by the server, and the same applies to Upgrade End Response where
there is an error on the Upgrade End response message sent by the server.

Upgrade End Request error statuses
The status field in the Upgrade End request informs the server of any errors during the download or
verification of the OTA firmware update image on the client. The error codes that could be reported

Over-the-air firmware/file system upgrade process for DigiMesh 2.4 OTA error handling

Digi XBee3® DigiMesh 2.4 RF Module User Guide 229

are:

ZCL OTA Command Status Error Message

0x06
Upgrade End Request

0x94 Client Timed Out

0x96 Invalid OTA Image

0x95 Client Aborted Upgrade

0x05 Storage Erase Failed

0x87 Contact Tech Support (Highly unlikely to occur)

OTA file system upgrades

After an OTA firmware update, all file system data and bundled MicroPython code is erased. To
continue running code, a new file system needs to be sent to the device after the firmware update is
complete. This section contains information on how to update the file system of remote devices over
the air.

OTA file system update process 231
OTA file system updates using XCTU 231
OTA file system updates: OEM 235

Digi XBee3® DigiMesh 2.4 RF Module User Guide 230

OTA file system upgrades OTA file system update process

Digi XBee3® DigiMesh 2.4 RF Module User Guide 231

OTA file system update process
Since OTA file system updates are signed, remote devices must be configured so that they can
validate incoming updates. To set up a network for OTA file system updates:

1. Generate a public/private Elliptic Curve Digital Signature Algorithm (ECDSA) signing key pair.
2. Using the generated public key, set FK (File System Public Key) on all devices that will receive

OTA file system updates.

Note You cannot set FK remotely. You must either set FK before the XBee3 DigiMesh RF Module is
deployed, or else serial access to the device is needed to set it.

To perform an OTA file system update:

1. On a local device, create a copy of the file system that you want to send over the air.
2. Create an OTA file system image, signed using the private key generated previously.
3. Perform an OTA update using the created OTA file.

Note The local device used to create the file system image must have the same firmware version
installed as the target device or the file system will be rejected. Use VR (Firmware Version) to check
the version number on both the staging and target devices.

You can perform all of these steps automatically through XCTU or manually using other tools.

OTA file system updates using XCTU
Use the following steps to perform a file system update OTA using XCTU:

1. Generate a public/private key pair
2. Set the public key on the XBee3 device
3. Create the OTA file system image
4. Perform the OTA file system update

Generate a public/private key pair
XCTU provides an ECDSA key pair generator that you can use to store a public/private key pair in .pem
files. To access the Generate file system key pair dialog:

1. Open the File System Manager dialog box.
2. Click Keys as shown below.

OTA file system upgrades OTA file system updates using XCTU

Digi XBee3® DigiMesh 2.4 RF Module User Guide 232

3. Click Generate in the Generate file system key pair dialog.
4. Save both the keys in a safe location and close the dialog box.

Set the public key on the XBee3 device
1. Open the configuration view of the target device in XCTU and go to the File System category.
2. In the File System Public Key row, click Configure.

OTA file system upgrades OTA file system updates using XCTU

Digi XBee3® DigiMesh 2.4 RF Module User Guide 233

3. In the Configure File System Public Key dialog box, click Browse and choose the .pem file
that you saved the public key into. Once this is done, the HEX value of the public key is visible
under the Public key section on the dialog box as shown.

4. Click OK to ensure that the key gets written into the device.

Note This can be only be done locally. XBee3 firmware DOES NOT support remotely setting the file
system public key at this time.

Create the OTA file system image
To create the OTA file system image:

1. Open the File System Manager dialog box.
2. Open a connection on the device that you want to generate the OTA file system image from.
3. Click FS Image.
4. In the Generate a signed file system image window that displays, click Browse and choose

the .pem file that the private key was stored in.
5. Once the path shows up on the Private Key file field, click Save to assign the .fs.ota an

appropriate file name and location.
6. Save the file.

You will be prompted with a File system image successfully saved dialog box if the file was
successfully generated.

OTA file system upgrades OTA file system updates using XCTU

Digi XBee3® DigiMesh 2.4 RF Module User Guide 234

Perform the OTA file system update
1. To add the target device, click Discover radios in the same network from the source device.
2. Enter Configuration mode on the remote device.
3. Click the down arrow next to the Update button and choose Update File System.

4. Choose the OTA file system image (.fs.ota) that the target node needs to be updated to.
5. Click Open.

OTA file system upgrades OTA file system updates: OEM

Digi XBee3® DigiMesh 2.4 RF Module User Guide 235

Once the file system image is completely transferred andmounted on the remote device, XCTU
informs you that the file system has been updated successfully.

OTA file system updates: OEM
Use the following steps to perform a file system update OTA using OEM tools:

1. Generate a public/private key pair
2. Set the public key on the XBee3 device

OTA file system upgrades OTA file system updates: OEM

Digi XBee3® DigiMesh 2.4 RF Module User Guide 236

3. Create the OTA file system image
4. Perform the OTA file system update

Generate a public/private key pair
Generate ECDSA signing keys using secp256r1 curve parameters (also known as prime256v1 or NIST
P-256).
To generate a public/private key pair using OpenSSL, run the following command:

openssl ecparam -name prime256v1 -genkey -outform pem -out keypair.pem

To extract the private key from the key pair generated above:

openssl pkcs8 -topk8 -inform pem -in pair.pem -outform pem -nocrypt -out
private.pem

To extract the public key from the key pair generated above:

openssl ec -in keypair.pem -pubout -out public.pem

Set the public key on the XBee3 device
The public keys generated by XCTU and OpenSSL are stored in *.pem files. These files need to be
parsed to get the value to use when setting FK. To parse a public key file, run:

openssl asn1parse -in public.pem -dump

The command will produce something like the following output:

0:d=0 hl=2 l= 89 cons: SEQUENCE
2:d=1 hl=2 l= 19 cons: SEQUENCE
4:d=2 hl=2 l= 7 prim: OBJECT :id-ecPublicKey
13:d=2 hl=2 l= 8 prim: OBJECT :prime256v1
23:d=1 hl=2 l= 66 prim: BIT STRING

0000 - 00 04 95 50 aa 55 b6 f5-5d 99 4d d8 15 d1 71 57 ...P.U..].M...qW
0010 - 51 80 d5 14 ec 1f 6a 15-51 a2 c4 b8 0f 77 10 8a Q.....j.Q....w..
0020 - 33 a3 80 07 47 40 14 8b-5c a7 4c 78 02 fc 4d 82 3...G@..\.Lx..M.
0030 - 90 4b 39 98 62 a1 1d 97-6e 78 fb 54 62 06 d2 41 .K9.b...nx.Tb..A
0040 - c7 3b

The public key should be 65 bytes long - it is the BIT STRING value at the end, with the leading 00
omitted; in this case:

049550aa55b6f55d994dd815d171575180d514ec1f6a1551a2c4b80f77108a33a380074740148b5ca
74c7802fc4d82904b399862a11d976e78fb546206d241c73b

Create the OTA file system image
You can create a file system image outside of XCTU using any utility that can perform ECDSA signing.
These instructions show how to do so using OpenSSL. To create an OTA file system image, use the
following steps.

Create a staged file system
In order to create a usable file system image, first create a 'staged' copy of the file system you want
to send on a local device.

OTA file system upgrades OTA file system updates: OEM

Digi XBee3® DigiMesh 2.4 RF Module User Guide 237

Use the FS command or MicroPython to load all of the files that you want to send onto the local
staging device.

Note The staging device must have the same firmware version installed as the target device or the
file system will be rejected. Use the VR command to check the version number on both the staging
and target devices.

Download the file system image
Run the command ATFS GET /sys/xbfs.bin to download an image of the file system from the staging
device. The file is transferred using the YMODEM protocol. See File system for more information on
downloading files using FS GET.

Pad the file system image
The file system image must be a multiple of 2048 bytes long before it is signed. Using hex editing
software, add 0xFF bytes to the end of the downloaded image until size of the file is a multiple of 2048
(0x800 in hex).

Calculate the image signature
Once the image has been padded to a multiple of 2048 bytes, it is ready to be signed. The ECDSA
signature should be calculated using SHA256 as the hash algorithm.
Assuming a public/private key pair has been generated as described in Generate a public/private key
pair, that the private key is named private.pem, and that the padded image is named xbfs.bin; this
can be done using OpenSSL with the following command:

openssl dgst -sha256 -sign private.pem -binary -out sig.bin xbfs.bin

sig.bin will contain the signature for the image.
Append the calculated signature to the image
The signature should be between 70 and 72 bytes, and it should be appended to the padded image.

Create the OTA file
Put the image into an OTA file that follows the format specified in ZigBee Document 095264r23. The
file should consist of:

n An OTA header
n An upgrade image sub-element tag
n The padded, signed image data

The OTA file must begin with an OTA header. See The OTA header for information on the format of the
header. The image type should be 0x0100 for a file system image upgrade.
The sub-element tag should come before the image data. The sub-element tag follows the format
described in section 6.3.3 of ZigBee Document 095264r23. It consists of 6 bytes: the first 2 bytes are
the tag id and should be set to 0x0000. The next 4 bytes contain the length of the file system image in
little-endian format.

Perform the OTA file system update
The process for performing an OTA file system update is the same as the process for performing an
OTA firmware upgrade, as described in Over-the-air firmware/file system upgrade process for

http://www.zigbee.org/wp-content/uploads/2014/11/docs-09-5264-23-00zi-zigbee-ota-upgrade-cluster-specification.pdf
http://www.zigbee.org/wp-content/uploads/2014/11/docs-09-5264-23-00zi-zigbee-ota-upgrade-cluster-specification.pdf

OTA file system upgrades OTA file system updates: OEM

Digi XBee3® DigiMesh 2.4 RF Module User Guide 238

DigiMesh 2.4. Note that the data that goes in the image blocks starts at the beginning of the image
data, after the OTA header and sub-element tag.

	About the XBee3 DigiMesh RF Module
	Applicable firmware and hardware
	Change the firmware protocol
	Regulatory information

	Get started
	Verify kit contents
	Assemble the hardware
	Plug in the XBee3 DigiMesh RF Module
	Unplug an XBee3 DigiMesh RF Module

	Configure the device using XCTU
	Configure remote devices
	Configure the devices for a range test
	Perform a range test
	XBIB-C Micro Mount reference
	XBIB-C SMT reference
	XBIB-CU TH reference
	XBIB-C-GPS reference
	Interface with the XBIB-C-GPS module
	I2C communication
	UART communication
	Run the MicroPython GPS demo

	Get started with MicroPython
	About MicroPython
	MicroPython on the XBee3 DigiMesh RF Module
	Use XCTU to enter the MicroPython environment
	Use the MicroPython Terminal in XCTU
	MicroPython examples
	Example: hello world
	Example: enter MicroPython paste mode
	Example: using the time module
	Example: AT commands using MicroPython
	MicroPython networking and communication examples

	Exit MicroPython mode
	Other terminal programs
	Tera Term for Windows

	Use picocom in Linux
	Micropython help ()

	File system
	Overview of the file system
	Directory structure
	Paths
	Limitations
	XCTU interface

	Configure the XBee3 DigiMesh RF Module
	Software libraries
	Over-the-air (OTA) firmware update
	Custom defaults
	Set custom defaults
	Restore factory defaults
	Limitations

	Custom configuration: Create a new factory default
	Set a custom configuration
	Clear all custom configuration on a device

	XBee bootloader
	Send a firmware image
	XBee Network Assistant
	XBee Multi Programmer

	Modes
	Transparent operating mode
	API operating mode
	Command mode
	Enter Command mode
	Troubleshooting
	Send AT commands
	Response to AT commands
	Apply command changes
	Make command changes permanent
	Exit Command mode

	Idle mode
	Transmit mode
	Receive mode

	Serial communication
	Serial interface
	Serial receive buffer
	Serial transmit buffer
	UART data flow
	Serial data

	Flow control
	Clear-to-send (CTS) flow control
	RTS flow control

	SPI operation
	SPI communications
	Full duplex operation
	Low power operation
	Select the SPI port
	Force UART operation

	I/O support
	Digital I/O support
	Analog I/O support
	Monitor I/O lines
	I/O sample data format
	API frame support
	On-demand sampling
	Example: Command mode
	Example: Local AT command in API mode
	Example: Remote AT command in API mode
	Periodic I/O sampling
	Source
	Destination

	Digital I/O change detection
	I/O line passing
	Digital line passing
	Example: Digital line passing
	Analog line passing
	Example: Analog line passing
	Output sample data
	Output control
	I/O behavior during sleep
	Digital I/O lines
	Analog and PWM I/O Lines

	Networking
	Network identifiers
	Operating channels
	Delivery methods
	Point-to-multipoint

	DigiMesh networking
	Broadcast addressing
	Unicast addressing
	Route discovery
	Routing
	Routers

	Repeater/directed broadcast
	MAC layer

	Encryption
	Maximum payload

	Network commissioning and diagnostics
	Local configuration
	Remote configuration
	Send a remote command
	Apply changes on remote devices
	Remote command response

	Build aggregate routes
	DigiMesh routing examples
	Replace nodes
	Test links between adjacent devices
	Trace route option
	NACK messages

	RSSI indicators
	Associate LED
	The Commissioning Pushbutton
	Definitions
	Use the Commissioning Pushbutton

	Node discovery
	Discover all the devices on a network
	Directed node discovery
	Destination Node
	Discover devices within RF range

	Sleep support
	Sleep modes
	Asynchronous sleep modes
	Asynchronous Pin Sleep mode (SM = 1)
	Asynchronous Cyclic Sleep mode (SM = 4)
	Asynchronous Cyclic Sleep with Pin Wake-up mode (SM = 5)
	MicroPython sleep with optional pin wake (SM = 6)
	Synchronous sleep modes
	Synchronous sleep support mode (SM = 7)
	Synchronous cyclic sleep mode (SM = 8)

	Sleep parameters
	Sleep pins
	Sleep conditions
	The sleep timer
	Sleep coordinator sleep modes in the network
	Synchronization messages
	Become a sleep coordinator
	Set the sleep coordinator option
	Resolution criteria and selection option
	Commissioning Pushbutton option
	Overriding syncs
	Sleep guard times
	Auto-early wake-up sleep option

	Select sleep parameters
	Start a sleeping synchronous network
	Add a new node to an existing network
	Change sleep parameters
	Rejoin nodes that lose sync
	Diagnostics
	Query sleep cycle
	Sleep status
	Missed sync messages command
	Sleep status API messages

	AT commands
	Networking commands
	CH (Operating Channel)
	ID (Network ID)
	CE (Routing / Messaging Mode)
	C8 (Compatibility Options)
	NI (Network Identifier)
	ND (Network Discover)
	DN (Discover Node)
	FN (Find Neighbors)
	NT (Network Discovery Back-off)
	NO (Network Discovery Options)
	NP (Maximum Packet Payload Bytes)

	DigiMesh Addressing commands
	SH (Serial Number High)
	SL (Serial Number Low)
	DH (Destination Address High)
	DL (Destination Address Low)
	RR (Unicast Mac Retries)
	MT (Broadcast Multi-Transmits)
	TO (Transmit Options)
	CI (Cluster ID)

	DigiMesh configuration commands
	MR (Mesh Unicast Retries)
	BH (Broadcast Hops)
	NH (Network Hops)
	NN (Network Delay Slots)
	DM (DigiMesh Options)
	AG (Aggregator Support)

	Diagnostic commands - addressing timeouts
	%H (MAC Unicast One Hop Time)
	%P (Invoke Bootloader)
	%8 (MAC Broadcast One Hop Time)
	N? (Network Discovery Timeout)

	Security commands
	EE (Encryption Enable)
	KY (AES Encryption Key)

	RF interfacing commands
	PL (TX Power Level)
	PP (Output Power in dBm)
	CA (CCA Threshold)
	DB (Last Packet RSSI)

	MAC diagnostics commands
	EA (MAC ACK Failure Count)
	EC (CCA Failures)
	BC (Bytes Transmitted)
	GD (Good Packets Received)
	TR (Transmission Failure Count)
	UA (Unicasts Attempted Count)
	ED (Energy Detect)

	Sleep settings commands
	SM (Sleep Mode)
	SP (Sleep Time)
	ST (Wake Time)
	SN (Number of Sleep Periods)
	WH (Wake Host Delay)
	SO (Sleep Options)

	Diagnostic - sleep status/timing commands
	SS (Sleep Status)
	OS (Operating Sleep Time)
	OW (Operating Wake Time)
	MS (Missed Sync Messages)
	SQ (Missed Sleep Sync Count)

	UART interface commands
	BD (Baud Rate)
	NB (Parity)
	SB (Stop Bits)
	FT (Flow Control Threshold)
	RO (Packetization Timeout)
	AP (API Enable)
	AO (API Options)
	AZ (Extended API Options)

	Command mode options
	CC (Command Character)
	CT (Command Mode Timeout)
	GT (Guard Time)
	CN (Exit Command mode)

	MicroPython commands
	PS (Python Startup)
	PY (MicroPython Command)

	File system commands
	FS (File System)
	FK (File System Public Key)

	UART pin configuration commands
	D6 (DIO6/RTS Configuration)
	D7 (DIO7/CTS Configuration)
	P3 (DIO13/UART_DOUT)
	P4 (DIO14/UART_DIN Configuration)

	SPI interface commands
	P5 (DIO15/SPI_MISO Configuration)
	P6 (DIO16/SPI_MOSI Configuration)
	P7 (DIO17/SPI_SSEL Configuration)
	P8 (DIO18/SPI_CLK Configuration)
	P9 (DIO19/SPI_ATTN Configuration)

	I/O settings commands
	D0 (DIO0/ADC0/Commissioning Configuration)
	D1 (DIO1/ADC1/TH_SPI_ATTN Configuration)
	D2 (DIO2/ADC2/TH_SPI_CLK Configuration)
	D3 (DIO3/ADC3/TH_SPI_SSEL Configuration)
	D4 (DIO4/TH_SPI_MOSI Configuration)
	D5 (DIO5/Associate Configuration)
	D8 (DIO8/DTR/SLP_Request Configuration)
	D9 (DIO9/ON_SLEEP Configuration)
	P0 (DIO10/RSSI/PWM0 Configuration)
	P1 (DIO11/PWM1 Configuration)
	P2 (DIO12/TH_SPI_MISO Configuration)
	PR (Pull-up/Down Resistor Enable)
	PD (Pull Up/Down Direction)
	IO (Set Digital I/O Lines)
	M0 (PWM0 Duty Cycle)
	M1 (PWM1 Duty Cycle)
	RP command
	LT command
	CB (Commissioning Button)

	I/O sampling commands
	IS (I/O Sample)
	IR (Sample Rate)
	IC (DIO Change Detect)
	AV (Analog Voltage Reference)
	IF (Sleep Sample Rate)

	I/O line passing commands
	IA (I/O Input Address)
	IU (Send I/O Sample to Serial Port)
	T0 (D0 Timeout)
	T1 (D1 Output Timeout)
	T2 (D2 Output Timeout)
	T3 (D3 Output Timeout)
	T4 (D4 Output Timeout)
	T5 (D5 Output Timeout)
	T6 (D6 Output Timeout)
	T7 (D7 Output Timeout)
	T8 (D8 Timeout)
	T9 (D9 Timeout)
	Q0 (P0 Timeout)
	Q1 (P1 Timeout)
	Q2 (P2 Timeout)
	PT (PWM Output Timeout)

	Diagnostics – Firmware/Hardware Information
	VR (Firmware Version)
	VL (Version Long)
	VH (Bootloader Version)
	HV (Hardware Version)
	%C (Hardware/Software Compatibility)
	%P (Invoke Bootloader)
	%V (Supply Voltage)
	TP (Temperature)
	DD (Device Type Identifier)
	CK (Configuration CRC)
	FR (Software Reset)

	Memory access commands
	AC (Apply Changes)
	WR (Write)
	RE (Restore Defaults)

	Custom default commands
	%F (Set Custom Default)
	!C (Clear Custom Defaults)
	R1 (Restore Factory Defaults)

	Operate in API mode
	API mode overview
	Use the AP command to set the operation mode
	API frame format
	API operation (AP parameter = 1)
	API operation with escaped characters (AP parameter = 2)

	Frame descriptions
	AT Command Frame - 0x08
	AT Command - Queue Parameter Value frame - 0x09
	Transmit Request frame - 0x10
	Explicit Addressing Command frame - 0x11
	Remote AT Command Request frame - 0x17
	User Data Relay frame - 0x2D
	Example

	AT Command Response frame - 0x88
	Modem Status frame - 0x8A
	Transmit Status frame - 0x8B
	Route Information Packet frame - 0x8D
	Aggregate Addressing Update frame - 0x8E
	Receive Packet frame - 0x90
	Explicit Rx Indicator frame - 0x91
	I/O Data Sample Rx Indicator frame - 0x92
	Node Identification Indicator frame - 0x95
	Remote Command Response frame - 0x97
	User Data Relay Output - 0xAD
	Description
	Format
	Example

	Over-the-air firmware/file system upgrade process for DigiMesh 2.4
	OTA upgrade image file formats
	OTA/OTB file
	fs.ota file
	The OTA header
	Hardware/software compatibility
	Sub-elements and tags
	Parse the image blocks

	Storage
	ZCL OTA messaging
	ZCL message output
	Image Notify
	Create the Image Notify request
	Query Next Image request
	Query Next Image response
	Image Block request
	Image Block response
	Upgrade End request
	Upgrade End response
	OTA error handling
	Default response commands
	Upgrade End Request error statuses

	OTA file system upgrades
	OTA file system update process
	OTA file system updates using XCTU
	Generate a public/private key pair
	Set the public key on the XBee3 device
	Create the OTA file system image
	Perform the OTA file system update

	OTA file system updates: OEM
	Generate a public/private key pair
	Set the public key on the XBee3 device
	Create the OTA file system image
	Perform the OTA file system update

